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Alternating Minimization and Boltzmann 
Machine Learning 
William Byrne, Student Member, IEEE 

Abstract- 'Paining a Boltzmann machine with hidden units 
is appropriately treated in information geometry using the infor- 
mation divergence and the technique of alternating minimization. 
The resulting algorithm is shown to be closely related to gradient 
descent Boltzmann machine learning rules, and the close rela- 
tionship of both to the EM algorithm is described. An iterative 
proportional fitting procedure for training machines without 
hidden units is described and incorporated into the alternating 
minimization algorithm. 

I. INTRODUCTION 

OLTZMA" machines are neural networks whose be- B havior can be described statistically in terms of simple 
interactions between the units of the network [l]. In general, 
network behavior may be desired which is more complex than 
can be achieved through these simple interactions. To obtain 
such behavior, additional units can be added to the network 
which effectively allow more complicated interactions between 
the units. The behavior of the original units is described by 
marginal distributions obtained from the state distribution of 
the entire network. The training problem is then to find a 
network such that these marginals closely approximate some 
given distribution. 

Consider the set of all Boltzmann machines with a given 
number of units and consider all distributions on the machine 
states which have the desired marginal distributions. If a Boltz- 
mann machine can be found whose distribution belonged to 
this latter set, the problem is solved. Otherwise, a possible so- 
lution is to chose a machine which is somehow close to this set. 

This learning problem is described in information geometric 
terms. The method of alternating minimization is applied to 
produce a sequence of machines though repeated projections 
between these sets. Each machine is closer to the set of 
desirable distributions than its predecessor as measured by 
the information divergence, which is particularly appropriate 
for operations on the distributions considered here. It will be 
shown that existing Boltzmann machine learning rules can be 
interpreted using this technique of alternating minimization. 

11. BOLTZMANN MACHINES 

A Boltzmann machine is a network of n units which behave 
according to a stochastic, discrete-time updating rule. The state 
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of the network is described by a binary vector of length n, 
x" = [ X I ,  . . . , xn] ,  where x j  E {0,1} specifies whether unit 
j has value 0 or 1 in the network state. When the network 
is running, at each time instant one of the units is chosen for 
updating. Suppose unit i is chosen for updating. It assumes 
the value 1 with probability 

and the value 0 with the complementary probability 1 - p ; .  
The parameters of the updating rule are the temperature, T ,  
and the network connectivities, {wi,j 1 5 i , j  5 n} ,  where 
w;,j describes the effect of unit j on unit i. Usually, wi,j is 
specified to be equal to wj,i and the self-connectivities w+ are 
0. When this is so, the connectivities can be arranged in a real- 
valued, symmetric, zero-diagonal n x n matrix W = (wi , j ) ,  

and it can be shown that if the units are chosen uniformly for 
updating, the steady-state probability of finding the network 
in state 2" is 

The constant b is a normalizing constant so that for all 
matrices W described above, the function B is a valid state 
distribution. The temperature, T ,  determines the randomness 
in the system, as can be seen from (2): as T increases with 
W fixed, the state distribution becomes uniform. Varying T 
allows for complex changes in behavior which are exploited 
in various applications of Boltzmann machines. However, T 
usually varies slowly with respect to network updating and 
training, so T will be fixed at 1 for the rest of this work 
(see [2] for a description of the issues involved in varying 
temperature). 

In the treatment of Boltzmann machines presented here, a 
machine and the parametric form of its state distribution (i.e., 
(2)) will be considered identical. The family of Boltzmann 
machines with n units will be written as 

(4) 
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where Pn is the collection of probability distributions on the 
set of machine states {0,1>". 

111. THE BOLTZMA" MACHINE TRAINING PROBLEM 
The training problem addressed here is that of constructing 

an n-unit Boltzmann machine whose visjble units 1, . . . , w 
behave according to a given distribution, P, which is defined 
on the states of the visible units [XI, .  . . , IC,] E (0, l},. The 
probabilities which can be assigned to a set of binary states by 
a w-unit Boltzmann machine (i.e., those probabilities described 
by (2)) have a specific form and, in general, P may not be 
one of these distributions. However, by adding hidden units 
to the network, it may be possible to alter the behavior of th: 
original visible units so that it more closely approximates P 
(this is discussed in [l]). 

Since the entire network behaves according to the state 
distribution B,  the behavior of the w visible units is described 
by the marginal distribution, B,, determined from B: 

B ~ ( x " )  = 1 B(y") lX~(y") ,  ( 5 )  
YnE{O, l )n  

where lxv([yl, . . .  , y J )  = 1 if [ y l ,  . . .  , y,] = IC" and 0 
otherwise (the subscript w indicates the marginal distribution 
over the units 1, . . . , w).AThe objective is to find a machine for 
which B, is close to P. 

The similarity between two distributions will be measured 
using the information divergence: 

where P and Q are arbitrary distributions which assign prob- 
abilities to the same set of events 2. Using the information 
divergence, the training problem can be stated as finding Bopt 
for which 

D(P1lBEPt) 5 D(PIlB,) v B E B. (7) 

Finding Bopt is therefore the same as solving 

in terms of the parameters which specify B. 

An Equivalent statement of the Training Problem 

The statement of the training problem in (8) is somewhat 
awkward, in that it involves the marginal distributions of the 
machines. A simpler reformulation is possible in terms of the 
family, V, of desirable distributions on the set of machine 
states {0, I},: 

2) = P E P" : P(y")l,v(y") { ynE{O,1)" 

whose marginal distribution on the visible units agrees with 
P .  Finding a machine whose visible units behave according 
to P is then the same as finding a machine which belongs to 

2). It will be shown below that 2) is related to B in such a 
way that solving 

is the same as solving 

inf D(PIIB). 
B E B  PEV 

This is a consequence of the following relationship between 
Boltzmann machines and the family 2): 

Property 1: For a fixed B E B,  

(12) 

and there is a P* E 2) which achieves this minimum. 

equality [3]. For P E 2) and B fixed, 
This property follows immediately from the log-sum in- 

so that D(PllBv) 5 infpEV D(PIIB). Equality holds in (14) 
if and only if [3] 

that is, for B ( P ) / P ( r " )  constant when the state of the visible 
units is specified. This ̂ necessary and sufficient condition can 
be solved in terms of P and B to find the unique P*: 

(16) 

which achieves the lower bound 

D(P*IIB) = D(PllB,).  (17) 

By construction, the 'U marginal of P* is P ,  so P* is the 
element of V closest to B under the information divergence. 
This P* is called the I-projection of B on V. 

Restatement of the Training Problem: Applying Property 1 
to (8) yields 

inf D PIJB, = BEBPEV inf inf D(PIIB). (18) 
BEB 

So the Boltzmann machine training problem of finding the best 
machine, Bopt, is that of solving 

inf D( PIIB) 
B E B  PEV 

in terms of its parameters and bopt. 



614 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 4, JULY 1992 

B. Finding Bt+' from Pt 

finding Pt from Bt.  It is necessary to solve 
The computation of Bt+' from Pt is more complicated than 

min D ( Pt I I B )  (25) 
B E B  

in terms of the connectivities (wi,j) which determine B. The 
derivation of the following property yields a description of the _ _  - - .  

Fig. 1. Alternating minimization applied to Boltzmann machine learning. desired Bt+l in terms Of parameters 'pecified by -". 
Property2: For a fixed 7 E D there is a B* E B for 

which 
IV. ALTERNATING MINIMIZATION 

Finding Bopt requires solving simultaneous nonlinear 
equations in (qJ), which is in general a difficult problem. 
However, a suboptimal solution to the training problem can 
be found using the technique of alternating minimization 
(Fig. 1) [4], which yields a sequence of distributions 
{ B 1 , P 1 , B 2 , P 2 , B 3 , P 3 , ~ . ~ }  such that 

D(PllB*) = gi;D(FIlB). (26) 

Property 2 fo~lows from the relationship b e t ~ e e n  the mo- 
ments of an exponential distribution and the family of distri- 
butions with the same moments. h t  C be the linear family 
of distributions with the same moments ( p i , j )  as a given 
distribution 7: 

The machines which appear in this sequence have the property 
that 

which, through Property 1, means that the machines improve 
with each iteration: 

The nonnegativity of the information divergence [3] implies 
that this nonincreasing sequence of divergences converges. If 
the sequence converges to zero, then the resulting distribution, 
limt+, Bt,  belongs to V ;  therefore a machine can be found 
whose behavior is arbitrarily good. It is also possible that 
the divergences are bounded away from zero, which may 
occur even when V and B intersect. In this case the training 
algorithm has found a local minimum, which may still be 
a useful machine. In practice, the procedure is halted when 

is sufficiently small. 

p(xn)xixj  = pi,?, 1 5 i < j 5 n 

(28) 

and let Q be any distribution on (0, l}". The I-projection 
of Q on C is defined to be the distribution P* of C for 
which D(P*I(Q) 5 D(PIIQ) V P E C. The Pythagorean 
theorem of information geometry [5] specifies P* through the 
relationship 

D(PIIQ) = D(PlIP*) + D(P*IIQ) v P E f, (29) 

where P* is constructed so that it belongs to C: 

P*(zc") = c Q ( x n )  exp 

In this application the Pythagorean theorem is easily verified 
so its proof will not be presented. 

To obtain Property 2, pick a Boltzmann machine B with 
parameters ( w ~ , ~ )  and b. Using (30), the I-projection of 5 on 
C is 

A.  Finding Pf from B' 
Pt is computed from Bt,  which is available from the pre- 

. vious iteration (the initial machine, B1,  is chosen at random). 
The distribution Pt is the I-projection of Bt on V, which 
satisfies 

P*(z") = cB(zn)  exp 
D(PtllBt) = pm;l;D(Pl1Bt) (24) l < i < j < n  

and can be found immediately from Bt in closed form as P*, 
defined in (16). 1 = cbexp 
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By the same argument, 

l l z < j l n  D(PtlJE,) =aCP(z") log- -  -loge, (44) 
w:,jxax,}, (35) P ( z U )  

X U  BE (xu  1 
where w,*,~ = w ~ , ~  + &. P* is clearly a Boltzmann machine 
which belongs to C by construction, so it is renamed B*. 
Substituting B* for P* in (29) yields 

SO that 

D(PIlE,) = D(PIIPt) + D(P"IJ%) 
D(PIIB) = D(PIIB*) + D(B*IIB) V P E C. (36) V P E D  V E , E E .  (45) 

Since the given distribution, P,  is certainly an element of C 
and D(B*((B)  = 0 iff B* = B [3], 

D(pllB*) < D(P[lB) V B  E B B # B*. (37) 

This implies that, for a given P,  the Boltzmann machine B* 
with the same moments as P achieves minBEa D(pllB) and 
Property 2 follows. 

Property 2 requires that Bt+' be chosen as B*,  the element 
of B whose moments agree with those of Pt : Bt+' should 
belong to Ct ,  where 

p!; a j  =C~" (X" )X~X~,  - 15 i < j 5 n (38) 
X n  

From this it is apparent that the intersection of V and E 
contains a single distribution, Pt ,  and that this intersection 
occurs at a right angle. These two geometric descriptions are 
applications of the I-divergence geometry presented in [5] and 
are also applied to Boltzmann machine learning within a more 
general information geometry framework in [7]. 

C. Finding Bt+' Through Iterative Proportional Fitting 

The distribution of a Boltzmann machine can be rewritten as 
A useful relationship follows from the Pythagorean theorem. 

(39) 

This is an instance of the duality between the parameters and 
the moments of exponential distributions; complete knowledge 
of either determines the distribution (see, e.g., [6]). 

Finding Bt+' from Pt has a geometric interpretation. 
Equation (29) shows that B and Ct intersect at a single 
distribution, Bt,  and do so at a "right angle," where the 
information divergence plays the role of the square of the 
Euclidean distance in the analogy to plane geometry. 

There is also a geometric description of finding Pt from 
Bt. This involves the exponential family, E,  of distributions 

E = { E ,  E Pn : log E,(x") = (1 - a )  logPt(z")  
+ a log Bt(X") + log C , }  (40) 

that connects the two distributions. For P E D and E, E E,  

where U is the uniform distribution on (0, l}". B belongs 
to a particular linear family of the form given in (28); thus, 
by comparison to (30), B is the I-projection of U onto this 
family.' Therefore, Bt+' is the I-projection of the uniform 
distribution U onto Lt .  Note also that Ct can be written as an 
intersection of larger linear families: 

(47) 

C:,, = P E P" : P ( x ~ ) ~ ~ ~ c ~  = pt ,J  . (48) 

To find an I-projection on such an intersection, an iterative 
proportional fitting procedure (IPFP) [5] can be used to find 
the projection of U onto Ct in terms of projections between 
the Ct,,. U is projected onto Ci,2, and the resulting projection 
is projected onto This procedure is carried out cyclically, 
projecting back onto C4,2 from Ck-,,, (e.g., Fig. 2). The 
resulting infinite sequence of projections converges to Bt+l, 
Each step in this computation yields a Boltzmann machine 
which satisfies one of the moment constraints. The compu- 
tation of each projection is straightforward, since only one 
moment constraint must be met. 

To apply this to computing Elt+' from Pt,  form an infinite 
sequence of sets in which the sets C:,j repeat infinitely often:2 

{ 27' t l  

where (ik, j k )  are such that CI, = CF, , 3 k .  Form {PI ,p2 ,  . . .} 
from pf,, in a corresponding manner. This allows the cyclic 
projection introduced above to be described as projections 

(42) 

where the last equality holds because Pt is chosen to satisfy 
(es. (16)) 

lD(PllC') = - H ( P ) ,  where H is the entropy function, so B is also the 

'The ordering is not important; each set should appear infinitely often. 

Pt(bl, .. . ,xn l )  - - m X l , .  .. ,GI]) 
B t ( [ x l , .  ' .  , ~ n ] )  (43) maximum entropy distribution in this family. 

BE([zl, .. , x u ] )  ' 

1 
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where the initial weights, w&, are zero, since QO is the 
uniform distribution. This sequence converges to Bt+', the 
I-projection of U on Lt,  and the machine which achieves 

D ( P ~ ~ ~ B ~ + ' )  = B € B  minD(Pt\(B).  (63) 

It is possible to implement the IPFP in a fairly efficient 
nondistributed algorithm by exploiting recursive relationships 
between parameters. Continuing the argument which led to 
(59) yields 

(64) 
Z Q k - 1 ( z n )  if x i k  = xjk = 1 

otherwise. &k(Z") = { % Q k F l  ( z n )  
Fig. 2. Computation of El'+' from P' in a three-unit machine. 

from Lk-1 to &: let Qo = U and for k 2 1 let Q k  be 
the I-projection of Q k - 1  on &. From the expression for the 
I-projection onto a linear family (eq. (30)), 

Q k ( Z n )  = C k Q k - i ( Z n )  e X P { X k X i k Z j k }  (50) 

x k  : Pk = C k Q k - 1 ( X n ) e X P { X k 2 i k Z 3 k ) Z , , 2 j k  (51) 
X n  

Evaluating the condition on X I ,  yields 

(54) 

which can be solved for X I ,  in terms of p k  and Q k - 1  

(55) 

(56) 

1 -vk pk e'k - - ___ - 
Ok 1 - p k  

O k  E Q k - l ( { Z n  : Z,, 1 Z J k  = 1)).  

From the above updating procedure, it is clear that each 
element of the sequence { Q k }  is a Boltzmann machine with 
weights ( w t J )  : 

& k ( Z " )  = C k Q ~ - l ( x n ) e ' k X ' ~ z J ~  (57) 

(58) = Ck ' ' . C1 e x p  { $ X h x ~ h x J h }  

with 

The iterations are halted when the o k  are close enough to the 
p ; ,  ,j,. This is useful for small networks, but unfortunately the 
operational cost increases exponentially with the network size. 

The alternating minimization training algorithm has been 
developed as a nested recursion. The desired distributions 
{P'}  are obtained through projection onto V. The IPFP is 
then used to obtain the machine closest to each of these 
distributions. The algorithm can be implemented using the 
Boltzmann machine distributed processing architecture, but 
before describing this, this training algorithm will be compared 
with other Boltzmann machine training algorithms. 

v. RELATIONSHIP TO OTHER BOLTZMANN MACHINE 
TRAINING ALGORITHMS 

The alternating minimization algorithm developed here is 
very closely related to other Boltzmann machine learning 
algorithms. Consider the problem of training a machine which 
has no hidden units: under the divergence criterion, the training 
goal is to find the machine B which minimizes D(PIIB) for 
a given P. This P describes the behavior of all the units in 
the network. The convexity of the information divergence [3] 
implies that a machine exists which solves this p r ~ b l e m , ~  and 
a gradient descent algorithm is described in [8] (see also [2]) 
that finds this machine. This minimization is also solved by 
the IPFP described earlier. The IPFP can therefore be used to 
train Boltzmann machines which have no hidden units. 

This problem of training a network to an entirely known 
distribution is only of restricted interest. Boltzmann machines 
are not powerful enough without hidden units, and if a machine 
has hidden units, the correct behavior of the hidden units is 
usually unknown. However, if the distribution which described 
the proper behavior of the entire network of hidden and visible 
units were known, the IPFP or gradient descent algorithms 
could be used to obtain the best network. The alternating 
minimization algorithm does not solve this problem of finding 
the globally optimal behavior for the entire network; however 
it does provide locally improving estimates of the optimal 
behavior through its projections onto the set of desirable 
distributions. Each of these projections is then used by the 
IPFP to find exactly the corresponding best machine. The 
algorithm can therefore be thought of as having two parts: one 

3The minimum value of this criterion may be unattainable, but it can be 
approached arbitrarily closely although some of the weights may diverge to 
foo .  
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part provides estimates of the best network behavior and the 
other part finds a Boltzmann machine whose behavior closely 
approximates this estimate. 

Gradient descent methods are also used to train machines 
with hidden units [9]. Two modes of network operation are 
employed to achieve this. While free running, a network 
updates its states as described previously and has steady-state 
distribution B. When the network is clamped, the visible units 
are fixed according to the desired distribution, P, and the 
remaining units update their states as if they were free running. 
This results in a new steady-state distribution, denoted B +. 
It can be shown that 

6 
-D(B+IIB) = -(P:] - p ? , j ) ,  
sww 

15 0 <.I I n ,  

(65) 

where p l J .  = B +({IC" : z, = IC] = l}), the probability of 
finding units a and 3 active simultaneously when the network 
is clamped (l),,j is found analogously when the network is 
free running). If B can be made closer to B +, clearly the 
free-running behavior of the visible units will be closer to P. 
To achieve this, the weights ( w ~ , ~ )  of B are updated in the 
direction of decreasing D ( 5  +Ill?); that is, each connectivity 
w , , ~  is incremented by -P&D(B +llB) for some small p. 
This is done repeatedly: the network is clamped and the p z j  
are observed; the network is allowed to run freely and the p z , j  
are observed; the weights are then updated to obtain a new 
machine. The sequence of machin_es produced by this gradient 
descent method will be denoted { B t }  to distinguish them from 
the machines { Bt } obtained through alternating minimization. 

To see the relationship between gradient descent Boltzmann 
machine learning and the alternating minimization algorithm, 
note that the clamped distributions can be written as 

2 3  

B ' (2")  = B(z" I z")p(x:") V zn = { X I , .  . . , x,} (66) 

B +(zc") = P*(zn) ,  (68) 

where P*(z") is the I-projection of 5 on V as defined in (16). 
Clamping is therefore the same as projection onto the set of 
desirable distributions. 

If at each iteration in gradient descent learning, the weights 
are updated repeatedly before the network is clamped again, 
it follows fro-m the discussion e_arlier in this section that 
the resulting Bt+' minimizes D(Bt 'IlB). The convexity of 
the divergence then implies that Bt+' = Bt+', and under 
this repeated weight adjustment, gradient descent learning is 
equivalent to learning through alternating minimization. The 
equivalence between the two procedures is also suggested by 
the learning rule, (65). The weights are updated in order to 
minimize the difference between the moments of the clamped 
distribution and the free-running distribution and, as described 
earlier, equality of these moments ensures that the machine 
closest to Pt has been found. 

It is noted in [l] that the gradient descent update rule, 
(65), does not depend on whether the units involved are 
hidden or visible. This is explained by restating the problem 
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Fig. 3. Comparison between gradient descent (left) and alternating mini- 
mization (right). 

in terms of projections between distributions on states (0. l}", 
where there is no distinction between visible and hidden; this 
distinction is present only implicitly in the definition of V. 

However, the gradient descent learning algorithm is not 
usually performed so as to minimize D (Bt  +Ill?) and cannot 
be considered as a form of alternating minimization. It is 
suggested in [2] that by not performing this minimization, the 
algorithm combines the best aspects of gradient descent and 
random search. In a sense the algorithm is a continuing search 
for better initial conditions which avoids entrapment in local 
minima (see Fig. 3), although there is no guarantee that it will 
find or remain in the global minimum. A similar sort of random 
search should occur by carrying out an inexact version of the 
alternating minimization algorithm in which, at each iteration, 
the IPFP halts after only a few steps. The machine Bt+' is 
then somewhat closer to Pt than Bt,  but not as close as is 
usually required. This is investigated in experiments described 
in a subsequent section (see Fig. 5). 

In [4] it is shown that in applications such as this one, alter- 
nating minimization leads to the EM algorithm [lo], which is a 
technique for finding maximum likelihood estimates of model 
parameters when the given information is incomplete. To see 
this, note that finding Bt+' requires minimizing D(Pt l (B) ,  
which, by using the definition of Pt in terms of Bt, can be 
shown to be the same as the following: 

D(PtJ1B) = P y x " )  log Pyx?) - 
X n  

= P"z") log P y x " )  - 
2 n  

P(Z")EB' [log B(z")  1 z:"]. (71) 
2" 

Therefore Bt+l is found so that it gives a maximum value 
of CZvi)(zu)EBt [log B ( z " )  1 T ~ ] ;  this is the combination of 
expectation and maximization which forms the EM technique. 
Alternating minimization is therefore equivalent to the EM 
technique, and gradient descent learning is then either the EM 
algorithm exactly or an approximation to it. 
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Iteration Iteration 

102 103 
12' ' """ ' ' ' " " " '  ' '"jd 20L ' ' ' """ ' ' ' """ ' ' *lrul 
100 10' 102 103 100 10' 

Iteration Iteration 

Fig. 4. Convergence evaluations for various network configurations: (left) machines with five hidden units and three visible units; 
(right) machines with five hidden units and five visible units. The top plots show divergence versus iteration and the bottom 
plots show the distance to the true weights. 

VI. IMPLEMENTATION OF THE ALTERNATING 
MINIMIZATION ALGORITHM 

The equivalence between clamping and projection onto the 
set V implies that the alternating minimization can be imple- 
mented using the Boltzmann machine distributed processing 
architecture. The moments p& (see (38)) necessary for finding 
Elt+' from Bt can be found by clamping Bt and observing 
its behavior. Similarly, in performing the IPFP, the q can be 
found from observing the machine &k-1 (see (56)). 

A summary of the training procedure is included here. 
Two stopping parameters are needed: 6 1  controls the overall 
procedure and 62 controls the IPFP. 

Alternating Minimization Training Algorithm Using the IPFP 

choose B1 at random. 
f o r t  = 1,2; . .  until D(Pt(JBt)  5 SI{ 

find & by clamping Bt.  
for IC = 1 , 2 , .  . . until [q,- P : , , ~ ,  1 5 62 V &{ 

} 
find &k from Q k - 1  using (61). 

use the final Q k  as Btfl. 
1 

VII. EXAMPLES OF TRAINING ALGORITHM PERFORMANCE 

Simulations of the alternating minimization training pro- 
cedure were performed to verify the convergence properties 
of the algorithm. The necessary parameters were computed 
explicitly via their defining equations, rather than through 
observing the behavior of a Boltzmann machine. In each 
simulation, a Boltzmann machine is chosen at random and the 
marginal distrjbution over its visible units is used as the desired 
distribution, P (a different machine is then used to initialize the 
algorithm). In this situation there is a best machine and ideally 

the training algorithm will find it; the problem of choosing a 
training task appropriate for Boltzmann machines is avoided. 

The results presented in Fig. 4 describe training results for 
two network configurations. Each machine had five hidden 
units, but the machine described in Fig. 4 (left) had three 
visible units while the machine in Fig. 4 (right) had five visible 
units. In each case, the IPFP was halted when the moments 
agreed within 0.00001, and 750 iterations of the minimization 
algorithm were performed. The training objective D (PIIB;) 
is plotted at each iteration in each of the ten tests of the 
algorithm. The I1 distance between the weights of the machine 
being trained and the weights used to generate the 
distribution P is also presented. In none of these cases do the 
weights of the machine being trained converge to the weights 
of the machine used to generate the desired distribution 

In Fig. 5, the convergence results are presented under 
two types of updating. In the first, Bt+' is found nearly 
exactly; i.e., the IPFP is performed so that the moments 
of Bt+' and Pt differ by less than 0.00001. In the sec- 
ond type of updating, the IPFP is performed so that each 
weight is updated ten times, and the resulting machine is 
taken as Bt+', regardless of how its moments agree with 
those of Pt. This is of interest as a possible way to reduce 
computational cost and also sheds light on the differences 
between the exact minimization algorithm and the random 
search/gradient descent learning algorithm. The network tested 
had five hidden units and three visible units and weights 
were chosen at random to initialize each of the algorithms. 
Each algorithm has its own characteristic behavior. Measured 
by the divergence objective function, the exact algorithm 
tends to improve rapidly initially, and then its learning slows. 
Presumably, it is exploring a local minimum in the search 

P .  
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10-3 
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> 
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10-6 - 
100 10' 102 103 

Iterations Iterations 

Fig. 5. Exact alternating minimization versus random search applied to a network with five hidden units and three visible units. 
In the exact method the IPFP is applied to convergence so that the resulting divergences are strictly decreasing. In the random 
search the IPFP halts after each weight is updated ten times. 

space. The inexact algorithm tends to search for a mini- 
mum, explores it, and then abandons the search to begin 
again. Sometimes the inexact algorithm finds a minimum 
sooner than the exact algorithm reaches that value, but in 
general, the exact algorithm tends to find slightly better 
solutions, although at a high computational cost. This behavior 
should depend on the machine architecture, and knowledge of 
the training problem could determine which approach works 
best. 

VIII. DISCUSSION 

A description of Boltzmann machine learning has been 
presented using concepts in information geometry. Alternating 
minimization through information projections and the iterative 
proportional fitting procedure are applied to the problem and 
it is shown that gradient descent Boltzmann machine learning 
rules are a form of alternating minimization. 

A simple form of the Boltzmann machine was used to 
present the alternating minimization procedure. More compli- 
cated network behavior than that of (2 )  is achievable by using 
a more complicated stochastic updating rule. For example, it is 
possible to achieve third-order interactions by using second- 
order update rules [ll], i.e. update rules which depend on 
terms x,x3 and lead to steady-state distributions of the form 

Lt+' using the IPFP, where 

P(x")x:ixj  = ~ f , ~  and 
X n  

In a similar manner, the learning procedure developed here 
can be extended to machines whose steady-state distributions 
result from more complex updating rules. 
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