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Discriminative Models for Speech Recognition

Overview

e Generative model for Speech Recognition - Hidden Markov Models
— discriminative criteria - MMI, MCE, MPE
e Discriminative classifiers

— maximum entropy Markov models
— hidden conditional random fields

e Dynamic kernels - Fisher kernels, generative kernels

e Conditional augmented models
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Hidden Markov Model
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e HMM generative model
— class posteriors, P(w|O1.7; A), obtained using Bayes' rule
— requires class priors, P(w) - language models in ASR

e Maximum likelihood training criterion used in many applications
— ASR - Gaussian Mixture Models (GMMs) as state output distributions
— efficiently implemented using Expectation-Maximisation (EM)

e Poor model of the speech process - piecewise constant state-space.
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Discriminative Training Criteria

e Discriminative training criteria commonly used to train HMMs for ASR

— Maximum Mutual Information (MMI) [1, 2]: maximise
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— Minimum Classification Error (MCE) [3]: minimise
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— Minimum Bayes' Risk (MBR) [4, 5]: minimise
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MBR Loss Functions for ASR

e Sentence (1/0 loss):

(r) 1, w#wo)
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e Word: directly related to minimising the expected Word Error Rate (WER)

— normally computed by minimising the Levenshtein edit distance.

e Phone: consider phone rather word loss

— Improved generalisation as more “error’'s” observed
— this is known as Minimum Phone Error (MPE) training [6, 7].
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Discriminative Training for LVCSR Systems

e Modifications to direct implementation using, e.g. extended Baum Welch

— Efficient denominator representation: lattices often used

— Acoustic Deweighting: scale state/segment probabilities

— Language Model “"Weakening": use heavily pruned bigram/unnigram rather
than tri-gram /4-gram

— |-Smoothing: use ML estimates as priors for discriminative estimation

e Last three are important to achieve good generalisation

e Example Broadcast News LVCSR gains (= 500 — 1000 hours training data)
— typically 200K-300K Gaussian components for each system

Training
ML | MPE
English (WER%) 16.0 | 13.1

Arabic (WER%) || 22.9 | 20.0
Mandarin (CER%) || 14.4 | 12.7

Language
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Maximum Entropy Markov Models

e Attempt to model the class posteriors directly - MEMMSs one example

— The DBN and associated word sequence posterior [3]

T
= qt ' q+1 P(W‘OLT;Q) = ZP(W‘q)HP(Qt|OtaQt—1§a)
q t=1

1
P(qi|og, qi—1; ) = Z(ax, o) exp (aTT(ot,qt,qt_l))

e Features extracted - transitions T(q¢, q;—1), observations T(oy, g;)

— same features as standard HMMs

e Problems incorporating language model prior

— gains over standard (ML-trained) HMM with no LM
— does yield gains in combination with standard HMM
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Hidden Conditional Random Fields

e Conditional random fields hard to directly apply to speech data

— observation sequence length 7" doesn’'t word match label sequence L
— introduce latent discrete sequence (similar to HMM)

e The feature dependencies in the HCRF and word sequence posterior [9]

P(W|01:T; a)
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— T1(w) may be replaced by log(P(w))
— allows LM text training data to be used
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HCRF Features

e The features used with HCRFs
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— features the same as those associated with a generative HMM
— state “distributions” not required to be valid individual PDFs

e Non-convex optimisation problem

Interest in modifying features extracted from sequence
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Dynamic Kernels
e Dynamic kernels (or features) map sequence data into a fix dimensionality

— standard classifiers (e.g. SVMs) can then be applied
— examples include marginalised count kernels [10], Fisher kernels [11]

e Generative kernels [12] modified version of Fisher kernels

log(p(O1.1;A))

$(Or:A) = | VA108(P(O1Ti )

i Vi log(p(O1:13A))

— p is the order of the kernel
— A specifies the parameters of the generative model.

e Can be used in generative models - augmented statistical models [13]
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HMM Generative Features

e HMM: p(Ol;T; )\) = qug {Hle Ag;_1q (ZmEQt CmN(Ot; Fom; Em)>}

e Derivative depends on posterior, V;m(t) = P(q: = {s;, m}|O1.1; ),

T
V5m 108 (p(O1.15 X)) = > v (1) 25,4 (01 — pjm)
t=1

— posterior depends on complete observation sequence, O
— introduces dependencies beyond conditional state independence
— compact representation of effects of all observations

e Higher-order derivatives incorporate higher-order dependencies

— increasing order of derivatives - increasingly powerful trajectory model
— systematic approach to incorporating additional dependencies
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Example Generative Kernel Features
e Consider a simple 2-class, 2-symbol {A,B} problem:

— Class wy: AAAA, BBBB
— Class wo: AABB, BBAA

P(A)=0.5 P(A)=0.5 Class wq Class ws

P(B)=0.5 P(B)=0.5 Feature |1 [ BBBB || AABB | BBAA

(2 joz( 3@ Log Lik || 111 | 1.11 [ 111 | L1
' ' ' Vaoa | 050 | -0.50 || 0.33 | -0.33
Q U VoV, || -3.83 | 0.17 || -3.28 | -0.61
VoaVi, || -0.17 | -0.17 || -0.06 | -0.06

0.5 0.5

e ML-trained HMMs are the same for both classes
e First derivative classes separable, but not linearly separable
— also true of second derivative within a state

e Second derivative across state linearly separable
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Conditional Augmented Models

e Features from dynamic kernels can be included in a discriminative fashion

— maximise

P(w|O;\, @) =

Ta(ol:T7 W) —

e Standard gradient descent approaches may be used to train parameters

— optimising « is a convex optimisation problem - unique, global solution

S(w —w) log(:p(OLT; At))

d(w — W)V log(p(Or.m; A™))

— optimising A is non-convex ...
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TIMIT Classification Experiments

e TIMIT phone-classification experiments

— 48 base-phones modelled (mapped to 39 for scoring)
— context-independent phone base models. 3-emitting state HMMs

o Trainin Components
Classifier >y i 10 P 50
HMM ML — 294 | 27.3
C-Aug ML | CML || 24.2 -
HMM MMI — 25.3 | 24.8
C-Aug MMI | CML || 23.4 —

Classification error on the TIMIT core test set

e C-Aug outperforms HMMs for comparable numbers of parameters

— currently not as good as the best HCRF numbers
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Summary

e Discriminative training criteria used in state-of-the-art ASR system
— underlying acoustic model still a generative HMM
e Recent interest in discriminative acoustic models for ASR, e.g.

— maximum entropy Markov models,
— hidden conditional random fields
— dynamic kernels/condition augmented models

e Consistent gains over discriminatively trained HMMs
— majority of evaluation on small tasks (TIMIT phone classification /recognition)
e Hard to predict whether gains will map to LVCSR tasks

— various techniques necessary for good discriminative training generalisation
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