
1 Statistical Sequence Modelling
Mark Gales

Speech recognition and speech synthesis can be viewed as examples of machine learn-
ing classification and regression respectively. One of the reasons for speech processing
being a distinct research area is the need to handle the sequential nature of both the
observation sequence, Y1:T , and the word sequence w1:L. This report discusses speech
processing within a machine learning framework, and approaches that allow the sequen-
tial nature of the data to be handled.

1.1 Language Models: A Sequence Model

This report is primarily concerned with sequence models for speech recognition and
speech synthesis. which are both sequence to sequence models. As a way of illustrating
some of the underlying models that are used, a single sequence task is first examined,
language modelling.

In language modelling the aim is to map the L length sequence of words w1:L =

w1, . . . ,wL to a single value that represents the probability of the language model, with
parameters 1 λ, generating the word sequence, P(w1:L). For simplicity of notation unless
the model parameters are needed to specify different models or configurations they are
omitted from equations. The probability of the word sequences is often estimated using
an N-gram approximation where the prediction of the next word is only dependent on
the preceding N − 1 words 2

P(w1:L) =

L∏
i=1

P(wi|w1:i−1) ≈
L∏

i=1

P(wi|wi−N:i−1) (1.1)

this form of approximation is essential to enable variable length word sequences to be
modelled.

The simplest approach is to use the counts derived from the training corpus, with ap-
propriate techniques adopted to ensure robustness of the estimates. As an alternative it
is possible to use a neural network to predict the probabilities (Bengio, Ducharme, Vin-
cent & Jauvin 2003). A more interesting form of language model is based on Recurrent
Neural Networks (RNNs) (Mikolov, Karafiát, Burget, Cernockỳ & Khudanpur 2010).

A problem with the n-gram approximation is that it restricts the history that can be

1 Unless explicitly required the dependence on the model parameters is dropped for simplicity of notation.
2 For simplicity of notation the “end-effects” are ignored.
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Figure 1.1 Recurrent Neural Network Language Model

used in predicting the word. To address this problem recurrent neural network language
models (Mikolov et al. 2010) have been proposed. A simple illustration of this form
of model is shown in Figure 1.1. The left-hand diagram illustrates the topology being
used, including “time-delays” for the generation of the history vector. The right-hand
diagram illustrates the “graphical model” for this form of model. The observed word
sequence w1:L is illustrated as shaded discrete variables, to illustrate that they are dis-
crete and observed. Continuous variables will be shown as circles, and unshaded if they
are not observed. The hidden variables, hi are shaded blue to indicate that they are a
deterministic function of the variables connected to that node 3

For this form of model, rather than using a fixed history, a history vector hi is in-
troduced into the model. This is meant to encode all the relevant information from the
complete word sequence up to word i. Thus

hi = φ (w1:i) (1.2)

hi is a fixed length vector generated from the i − 1 length word sequencew1:i−1. This is
similar to the concept of the feature space for sequence kernels discussed in more detail
in section 1.5. Now

P(w1:L) =

L∏
i=1

P(wi|w1:i−1) ≈
L∏

i=1

P(wi|wi−1,hi−2) ≈
L∏

i=1

P(wi|hi−1) (1.3)

For this model rather than using a standard sequence kernel feature-space, in the RNNLM
this fixed length has the following form is used

hi = f (xi,hi−1) = fh
(
Wf
hxi + Wr

hhi−1 + bh
)

(1.4)

fh() is the activation function of the hidden layer. There are more complicated forms pos-
sible for f (xi,hi−1), for example long-short term memory (LSTM) models (Hochreiter
& Schmidhuber 1997), and gated recurrent unit (GRU) models (Chung, Gulcehre, Cho

3 For graphical modes this relationship should be probabilistic. Though deterministic the nodes are shown
as they form an integral part of this form of model, and related models.
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& Bengio 2014). Additionally it is possible to stack models and add “highway” connec-
tions (Irie, Tüske, Alkhouli, Schlüter & Ney 2016). For all these models, the language
model probabilities are then obtained from the output layer using

P(wi|w1:i−1) ≈ y f (wi) (1.5)

yi = ff
(
Wyhi−1 + by

)
(1.6)

where

• f (wi) is element in the 1-of-K encoding of word wi;
• yi is the probability mass function of the 1-of-K encoding of the word at position i in

the sequence;
• xi = g(wi) is a 1-of-K encoding of the word at position i, wi, in the sequence.

The training of these forms of model, as well as the issues, and possible solutions,
to including these forms of model in to a speech recognition system, is discussed in
more detail in (Liu, Chen, Wang, Gales & Woodland 2016, Chen, Liu, Wang, Gales &
Woodland 2016).

1.2 Speech Processing from a Machine Learning Perspective

Speech recognition and speech synthesis can be posed as examples of classification and
regression. Speech recognition is a classification task mapping the digitised, τ length,
waveform ywav1:τ into a word-sequence, w. In practice this is often done as a two stage
process 4, first performing feature extraction on the waveform, to form a T length ob-
servation sequence, Y1:T = {y1, . . . ,yT }, and then performing classification:

ywav1:τ → Y1:T → w (1.7)

Note the length of the word-sequence is unknown, but will be less than the length of the
observation sequence. Classification is usually an application of Bayes’ decision rule.
For Bayes’ decision rule the classification criterion can be expressed as

ŵ = arg max
w
{P(w|Y1:T )} (1.8)

assuming that there is a deterministic mapping from the waveform to the feature vectors.
This criteria yields the most likely words sequence, sentence. It is possible to use other
decoding approaches such as minimum Bayes’ risk decoding that yield word sequences
that minimise the word error rate. These have the form

ŵ = arg min
w

∑
w̃

P(w̃|Y1:T )L(w̃,w)

 (1.9)

where w̃,w) is the “loss”, measured at for example the word level, between the “hy-
pothesis” w̃ and the “reference” w.

4 There has been increasing interest in integrating the feature extracting stage into the neural network.
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Conversely speech synthesis can be viewed as a regression task to obtain the wave-
form, ywav, from a known word sequence w1:L. Again this is commonly expressed as a
two stage process 5, of first generating a trajectory of features, Y , that are then mapped
to the waveform:

w1:L → Y → ywav (1.10)

where Y are the set of feature vectors generated at a fixed rate that determine the nature
of the speech signal. This process is often simplified to the generation of a set of feature
vectors and then the generation of the waveform given these features. Thus synthesis is
often written as

ŷwav = arg max
ywav

{
p(ywav|Ŷ )

}
(1.11)

where the feature sequence (vocoded data) is extracted using

Ŷ = arg max
Y
{p(Y |w1:L)} (1.12)

Again the length of the feature vector trajectory will not be same as the length of the
word sequence, though the length of the waveform is usually deterministic given the
length of the feature vector trajectory.

It is clear that at the heart of both recognition and synthesis is the ability to han-
dle distributions over observation and word sequences that are not of the same length.
This sequence-to-sequence problem is more challenging than the language modelling
example given in the previous section. Central to this process will be the concept of
conditional independence assumptions, as used in the language model in the previous
section.

1.3 Graphical Models and Conditional Independence

The previous section has discussed the use of sequence models as being at the center
of both speech recognition and synthesis. It is interesting to look at possible forms of
conditional independence assumptions that will be the underlying assumptions for the
sequence-to-sequence models described later in this report 6.

Graphical models (Lauritzen 1996) are a method to describe the conditional indepen-
dence assumptions in a system. This is a rich research area in its own right, extending
far beyond the scope of this book. This section briefly describes some of the most com-
monly used forms of graphical model in speech processing.

One of the most commonly used models in speech processing and a range of other
sequence modelling applications is the Hidden Markov Model (HMM) (Gales & Young

5 As with speech recognition there is increasing interest in “waveform” synthesis.
6 A trivial generalisation is to consider fix spans of the observation, for example yt−1,yt ,yt+1 as the

effective observation at time t. This is commonly used in speech processing, but does not alter the
underlying modelling process. Note this section uses an equality, as the probabilities are being obtained
under the modelling assumptions, rather than expressing approximations to the probabilities.
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Figure 1.2 Graphical Model for a Hidden Markov Model: A Dynamic Bayesian Network

2007). The graphical mode for which is shown in the left in Figure 1.2. This encodes
the following conditional independence assumptions

1. states: state transition distributions are conditional independent given the previous
state. Thus

P(θ1:T ) =

T∏
t=1

P(θt |θt−1) (1.13)

2. observations: state output distributions are conditionally independent given the state.
Thus

p(Y1:T |θ1:T ) =

T∏
t=1

p(yt |θt) (1.14)

For the combination of the HMM and GMM, shown on the right of Figure 1.2 the
state output distribution at time t is also a function of the unobserved, discrete com-
ponent, ωt. Thus

p(Y1:T |θ1:T ,ω1:T ) =

T∏
t=1

p(yt |θt, ωt) (1.15)

The state output probability is obtained by marginalising out over the components

p(Y1:T |θ1:T ) =

T∏
t=1

∑
ω∈{Ω}T

P(ω|θt)p(yt |θt, ω) (1.16)

The overall likelihood of the model generating the observation sequence can then be
expressed as

p(Y1:T ) =
∑

θ1:T∈{Θ}T

T∏
t=1

p(yt |θt)P(θt |θt−1)

where {Θ}T is the set of all possible T -length state sequences 7.

7 At this stage there is no connection with the word sequence. To add the likelihood that the word-sequence
generated the observation sequence the set of all possible state sequence is restricted to those associated
with a particular word sequence.
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Figure 1.3 Dynamic Bayesian Networks for Switching Linear Dynamical Model (left), Factorial
HMM (center) and Auto-Regressive HMM (right)

Other forms of graphical models have also been applied in the speech processing
area. For example additional, continuous, latent variables can be added (Roweiss &
Ghahramani 1999, Rosti & Gales 2001) yielding Switching Linear Dynamical Mod-
els (SLDMs), or additional discrete latent variables for Factorial HMMs. Finally the
state distribution can be made a function of the previous observation, a Auto-Regressive
HMM (ARHMM). All of these modified graphical models are shown in Figure 1.3.
Based on the form of graphical model, which defines the conditional independence as-
sumptions, the probability of the observation sequence can be derived. For example in
the case of the factorial HMMs

p(Y1:T ) =
∑

θ(1)
1:T∈{Θ}

(1)
T

∑
θ(2)

1:T∈{Θ}
(2)
T

T∏
t=1

p(yt |θ
(1)
t , θ(2)

t )P(θ(1)
t |θ

(1)
t−1)P(θ(2)

t |θ
(2)
t−1) (1.17)

tθ θ
t+1

θt−1

yt−1 yt yt+1 yt+2

t+2θ

Figure 1.4 Trajectory HMM: An Undirected Graphical Model

The examples of graphical models given above are all Bayesian Networks, Directed
Acyclic Graphs (DAGs). Other forms of graphical model are also possible. One form
that has been used for both speech recognition and synthesis is the undirected graphi-
cal model. These can be used to represent product of experts (Zen, Gales, Nankaku &
Tokuda 2012). One example of this is the trajectory HMM (Zen, Tokuda & Kitamura
2007), which is used in speech synthesis. The graphical model for this is shown in Fig-
ure 1.4. This may be viewed as a globally normalised model, rather than the form of
local normalisation (to yield a probability) that is used for BNs. The likelihood for the
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model in Figure 1.4 can be written as

p(Y1:T ) =
1
Z

∑
θ1:T∈{Θ}T

T∏
t=1

p (f (Yt−2:t+2,θt−1:t+1)) (1.18)

where f (Yt−2:t+2,θt−1:t+1) is a feature-vector function of both the observation sequence
and the state sequence.

As discussed in section 1.1, in addition to the descriptions of the standard graphical
models, an additional deterministic node will be added in this work, see Figure 1.1.
Though this can be subsumed within connecting nodes they will be kept distinct in this
report since it allows the dependencies of the neural network nodes to be explicitly
described.
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t+1h
~

ht t+1h

yt yt+1 ht t+1h

yt yt+1

z t z t+1

RNN Bi-Directional RNN Latent Variable RNN

Figure 1.5 Three variants of recurrent neural networks

Figure 1.5 shows three variants of RNN. Note that both GRUs and LSTMs have the
same form in terms of dependencies. The deterministic nodes are shown in blue. For the
RNN model shown above

p(Y1:T ) =

T∏
t=1

p(yt |ht) (1.19)

ht = f (ht−1,yt−1) (1.20)

As described for the RNNLM, the history vector can model a representation of the
complete history of observation vectors. Two modifications to the baseline RNN are
also shown. The first version is the bi-directional RNN (Schuster & Paliwal 1997) where
the following approximation is used

p(yt |Y1:t−1,Yt+1:T ) = p(yt |ht, h̃t) (1.21)

ht = f (ht−1,yt−1) (1.22)

h̃t = f (ht+1,yt+1) (1.23)

Care must be taken with this form of model, as the probability of the observation at a
particular time instance is a function of both the previous and future observations via the
history vectors ht and h̃t respectively. The probability of the sequence can be expressed
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as

p(Y1:T ) =
1
Z

T∏
t=1

p(yt |ht, h̃t) (1.24)

where the normalisation term ensures that this is valid PDF. A second modification
is to introduce latent variables Z1:T = z1, . . . ,zT . The probability of the observation
sequence for this latent variable RNN (Chung, Kastner, Dinh, Goel, Courville & Bengio
2015) can be expressed as

p(Y1:T ) =

∫ T∏
t=1

p(yt |ht)p(zt |ht−1)dZ1:T (1.25)

ht = f (ht−1, zt,yt−1) (1.26)

It is interesting to consider the forms of temporal conditional independence that these
probabilistic and deterministic relationships between variables can describe. This has
important implications for both training and inference.
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θ t
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Figure 1.6 Dynamic Bayesian Networks for Switching Linear Dynamical Model (left), Factorial
HMM (center) and Auto-Regressive HMM (right)

Figure 1.6 shows three forms of DBN that will be used to illustrate the temporal
modelling. Given the state sequence, θ1:T , the probabilities is discussed below.

• Auto-Regressive HMM (AR-HMM): observation dependence extension of the HMM,
Figure 1.2. Here

p(Y1:T |θ1:T ) =

T∏
t=1

p(yt |yt−1,θt) (1.27)

The most common form of distribution is a Gaussian. Thus

p(yt |yt−1,θt) = N(yt;A
(y)
θt
yt−1 + µθt ,Σθt ) (1.28)

where A(y)
θt

is the linear transform representing the impact of the previous obser-
vation on the mean of the current observation.
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• Switching Linear Dynamic Model (SLDM):

p(Y1:T |θ1:T ) =

∫
p(Y1:t |Z1:T ,θ1:T )p(Z1:T |θ1:T )dZ1:T (1.29)

=

∫  T∏
t=1

p(yt |zt, θt)p(zt |zt−1, θt)

 dZ1:T (1.30)

The standard form for this expression uses Gaussian distribution and linear rela-
tionships between the variables. Thus

p(yt |zt, θt) = N(yt;µθt +Cθtzt,Σθt ) (1.31)

p(zt |zt−1,θt) = N(zt;A
(z)
θt
zt−1 + µ(z)

θt
;Σ(z)

θt
) (1.32)

The latent variable zt is this model yields a continuous representation of the com-
plete history of unobserved states θ1:t.

• Latent Variable Model: introduce a latent variable as a function of the previous ob-
servation

p(Y1:T |θ1:T ) =

∫
p(Y1:t |Z1:T ,θ1:T )p(Z1:T )dZ1:T (1.33)

=

∫  T∏
t=1

p(yt |zt, θt)p(zt |yt−1, zt−1)

 dZ1:T (1.34)

The simplest form of dependency for the latent variable is to make it Gaussian

p(zt |yt−1, zt−1) = N(zt;A(y)yt−1 +A(z)zt−1 + µ(z);Σ(z)) (1.35)

Here the latent variable zt can be viewed as a continuous representation of the
previous observations Y1:t−1

In addition, for all models illustrated in Figure 1.6 the probability of the state-sequence
given the word-sequence can be expressed as

P(θ1:T ) =

T∏
t=1

P(θt |θt−1) (1.36)

The nature of these temporal dependencies will be partitioned into three broad groups.

1. Continuous/discrete observed: this the form of dependency shown in the AR-HMM
between the continuous observations, in addition there is the dependence on the state.
Normally the observations that are extracted only contain information about the cur-
rent window, they are not designed to contain information about the back-history of
observations. This dramatically limits the ability of this form of model to represent
the history.

2. Discrete unobserved: this the standard discrete Markov assumption. The discrete
state contains sufficient information for the complete history. In practice, without
an exponential increase in the number of discrete states, this can only be used to
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represent a finite history 8. In Figure 1.6 the state-sequence θ1:T is assumed to be
generated under this assumption.

3. Continuous unobserved: this is the form of latent variable zt in the SLDM and latent
variable model. Compared to the observed continuous variables there is the ability to
both decide the dimensionality of the system, and to allow the system to learn how
the latent variable parameters should be used.

The discussion above has focused on standard graphical models where there are prob-
abilistic relationships between all the variables. The same concepts can be applied to
the deterministic relationships described in the discussion of RNN variants, Figure 1.5.
There are two interesting differences between the standard, linear Gaussian, distribution
discussed above and the form for RNNs.

1.4 Generative Sequence-to-Sequence Models

For many years the dominant form of model used in speech recognition and speech
synthesis was based on generative models, in particular forms of Hidden Markov Mod-
els (HMMs) (Gales & Young 2007). These systems model the joint distribution of the
observations and the labels. This joint distribution is then marginalised out to yield the
distribution of interest. This section, and the next section, will focus on speech recogni-
tion, though similar forms of analysis can be done for speech synthesis.

The majority of speech recognition systems handle the difference in length between
the L-length word sequence, w1:L and the T -length observation sequence Y1:T by in-
troducing discrete latent variables, states, θ1:T . The joint distribution is then expressed
as

p(Y1:T ,w1:L) = P(w1:L)
∑

θ1:T∈{Θ}T

p(Y1:T ,θ1:T |w1:L) (1.37)

= P(w1:L)
∑

θ1:T∈{Θ}T

P(θ1:T |w1:L)p(Y1:T |θ1:T ) (1.38)

where {Θ}T is the set of all T -length state sequences. This has now yielded three distinct
models:

• language model P(w1:L): this was briefly discussed at the start of this report;
• alignment model P(θ1:T |w1:L): the “relationship” between the unobserved state se-

quence and the word sequence;
• acoustic model p(Y1:T |θ1:T ): the probability of the observation sequence given the

state-sequence.

The nature of the alignment model and acoustic model will now be described in more
detail.

8 This is a slight simplification as cache and trigger forms of model can also be used. These allow longer
span dependencies to be incorporated, but empirically have been found to yield limited gains.
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Classification with this form of model relies on Bayes’ rule. Thus for an observed
T -length observation sequence Y1:T Eqn 1.8 is expressed as

ŵ = arg max
w
{P(w|Y1:T )} = arg max

w
{P(Y1:T |w)P(w)} (1.39)

1.4.1 Alignment Model

The alignment model associated with speech recognition system is itself normally split
into two models. The first is the mapping from the word sequences to sub-word models,
the lexicon, P(s|w1:L). The second model is the duration model which yields the prob-
ability of a particular allocation of the T length feature vector into sub-word models,
P(θ1:T |s). So

P(θ1:T |w1:L) =
∑
s∈{S}

P(θ1:T |s)P(s|w1:L) (1.40)

where {S} is the set of all sub-word sequences associated with the word-sequencew1:L.
The base form of the lexicon is usually derived by hand, or using a small set of pronun-
ciations and a grapheme to phoneme (G2P) model (Bisani & Ney 2008). Pronunciation
probabilities can then be added to this lexicon, yielding a standard word by word parti-
tion of word in sub-word unit.

The second model is itself a doubly sequential model connecting the T -length ob-
servation sequence with a K-length state. The two sequences are linked by assigning
durations to the K-length state sequence. This is usually modelled as Markov process
with an associate duration model. Thus

P(θ1:T |s1:K) =

K∏
i=1

P(d(si|θ1:T , i)|si) (1.41)

where d(si|θ1:T , i) yields the number of frames allocated to state si (at occurrence i) in
the state-sequence θ1:T . The simplest form of model, used in standard HMMs, is to state

P(d(si|θ1:T , i)|si) = P(di|si) =
∏
τ=1

(1 − asi
ii )(asi

ii )di (1.42)

where asi
ii is the self-loop probability for state i.

1.4.2 Acoustic Model

A range of acoustic models, that yield p(Y1:T |θ1:T ), have been examined for speech
processing (Gales & Young 2007, Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior,
Vanhoucke, Nguyen, Sainath & Kingsbury 2012, Schuster & Paliwal 1997, Robinson
& Fallside 1991). At the heart of these models is the nature of the conditional inde-
pendence assumptions discussed in section 1.3. There are two T -length sequences that
determine the likelihood: the observed feature vectors Y1:T ; and the state sequence θ1:T .
Dependencies within both sequences need to be considered.

In this report the nature of the dependencies will be described asMarkovian where
a fixed-length “history” is being used, or non-Markovian where a complete history, or
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Figure 1.7 Dynamic Bayesian three forms of acoustic model dependencies

representation thereof, is used. Figure 1.7 shows three dependencies for three of the
models described.

1. Fully Markovian: this is the simplest form of model. Here

p(Y1:T |θ1:T ) =

T∏
t=1

p(yt |θt) (1.43)

The observations are conditionally independent given the state at that time instance.
This expression is the underlying acoustic model for Hidden Markov Models (HMMs),
the BN for this model was shown in Figure 1.2. As previously discussed it is possi-
ble to extend the dependencies to fixed numbers of previous states, or features. For
example if only a fixed history of observation features are considered, in this case
the previous observation, then

p(Y1:T |θ1:T ) =

T∏
t=1

p(yt |yt−1, θt) (1.44)

yielding an Auto-regressive HMM, see Figure 1.6.
2. State Markovian: here the observations not only depend on the current state, but

also on the all previous observations. Thus the feature dependencies are non-Markovian,
whereas the state-dependencies are Markovian. This is illustrated in Figure 1.7(a).
The the conditional likelihood can be expressed as

p(Y1:T |θ1:T ) =

T∏
t=1

p(yt |Y1:t−1, θt) (1.45)

It is impractical to use this precise form, as there would be an exponential growth in
the number of model parameters. Instead of trying to explicitly model the complete
history of observations, a compact fixed-dimensional representation of this history
can be used. Thus

p(yt |Y1:t−1, θt) ≈ p(yt |ht−1, θt) (1.46)

where ht−1 is a fixed dimension representation of the observation sequence Y1:t−1

ht = f (yt−1,ht−1) (1.47)
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3. Feature Markovian: here the generated features are assumed to be conditionally
independent given the current state, illustrated in Figure 1.7(b). Thus

p(Y1:T |θ1:T ) =

T∏
t=1

p(yt |θ1:t) (1.48)

This has not directly addressed the problem of the growth in the number of model
parameters. Instead of trying to explicitly model the complete history if observations,
a compact fixed-dimensional representation of this history is used. Here

p(yt |θ1:t) ≈ p(yt |ht−1, θt) ≈ p(yt |ht) (1.49)

where ht−1 is a fixed dimension representation of the state sequence θ1:t−1

ht = f (θt,ht−1) (1.50)

This is the basis of the Recurrent Neural Network acoustic models in speech synthe-
sis (Zen & Sak 2015).

4. Non-Markovian: here as much information as possible is used.

p(Y1:T |θ1:T ) =

T∏
t=1

p(yt |Y1:t−1,θ1:t) (1.51)

Again a history vector can be used to yield a compact representation of this informa-
tion

ht = f (yt−1, θt,ht−1) (1.52)

One of the issues that arises from using feature Markovian, or non-Markovian, forms
of model for speech recognition is that there is a dependence on an unobserved latent
variable. This results in a dependence e on a complete back-history of states. This is
exactly the same problem as using an RNNLM during decoding.

An interesting question when using deep neural networks in generative models is the
form of network, and training criterion. It is possible to use Mixture Density Neural Net-
works (Bishop 1994) to yield a probability density function, often by using the network
to predict the parameters of a standard model such as a Gaussian distribution. This form
has been used for speech synthesis (Zen & Senior 2014). For speech recognition within
a generative modelling framework, it is more common to train a discriminative model
and then convert the output into a pseudo likelihood. Consider the fully Markovian case,
the HMM-based model. Here

p(Y1:T |θ1:T ) ≈
T∏

t=1

p(yt |θt) =

T∏
t=1

P(θt |yt)p(yt)
P(θt)

(1.53)

P(θt |yt can be estimated as a standard discriminative DNN, p(yt) does not depend on
the word-sequence, and P(θt) is the prior of the state.
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It is more interesting (challenging) to consider the state Markovian case from Fig-
ure 1.7(a). The acoustic model component can be expressed as

p(Y1:T |θ1:T ) ≈
T∏

t=1

p(yt |ht−1, θt) =

T∏
t=1

P(θt |yt,ht−1)p(yt |ht−1)
P(θt |ht−1)

(1.54)

The first numerator term, P(θt |yt,ht−1), is a discriminative RNN and will be discussed
in section 1.5. The second numerator, p(yt |ht−1) is only a function of the observation
sequence. However, tough its value does not depend on the word-sequence, it does de-
pend on the current model parameters through the value of the history vector ht−1. The
denominator term, P(θt |ht−1), is problematic as it is both a function of the model pa-
rameters and the state 9. To address this problem an additional approximation is made,
that the P(θt |ht−1) ≈ P(θ). Thus

p(Y1:T |θ1:T ) ≈
T∏

t=1

P(θt |yt,ht−1)p(yt |ht−1)
P(θt)

∝

T∏
t=1

P(θt |yt,ht−1)
P(θt)

(1.57)

This form of pseudo-likelihood is the standard form that is used in hybrid systems (Bourlard
& Morgan 1994).

1.5 Discriminative Sequence-to-Sequence Models

The previous section has focused on generative models. This is natural to do for speech
synthesis, a fundamentally generative process, but not so obvious for speech recognition
which is a classification, discrimination, task. It is therefore of interest to examine how
discriminative models (Bishop 2006) can be applied to sequence-to-sequence modelling
tasks such as speech recognition. In a discriminative model the posterior probability are
directly modelled, rather than obtained via Bayes rule. Discriminative models have the
same issue as generative models: how to prevent an exponential growth in the number
of model parameters. The issue is addressed in a similar fashion by making conditional
independence assumptions and compact representations of “histories”. Additionally la-
tent variables can be introduced to handle differences in the length of the sequences. For
discriminative models the introduction of the latent state sequence θ1:T yields

P(w1:L|Y1:T ) =
∑

θ1:T∈{Θ}T

P(w1:L,θ1:T |Y1:T ) (1.58)

≈
∑

θ1:T∈{Θ}T

P(w1:L|θ1:T )P(θ1:T |Y1:T ) (1.59)

9 The correct approach given the model would be to compute

P(θt |ht−1) =

∫
P(θt |y,ht−1)p(y|ht−1)dy (1.55)

Note for the fully-Markovian case the standard approximation is reasonable as

P(si) =

∫
P(si |y)p(y)dy ≈

1
T

T∑
t=1

P(θt = si |yt) (1.56)
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An alternative way, related to sequence kernels, is to use a fix-length encoding of the
observation sequence

P(w1:L|Y1:T ) ≈
L∏

i=1

P(wi|φ(Y1:T ,w1:i−1)) (1.60)

This section will briefly describe the following four models based on the above expres-
sions:

• discriminative alignment model P(w1:L|θ1:T ;λ): this is the mapping of the state-
sequence to the word-sequence;

• discriminative acoustic model P(θ1:T |Y1:T ;λ): the mapping from the observations to
the state sequence;

• structured discriminative model P(w1:L,θ1:T |Y1:T ;λ): the joint distribution is mod-
elled and the posterior obtained by marginalising;

• encoder-decoder model: P(wi|φ(Y1:T ,w1:i−1)): where the nature of the mapping of
variable length sequence to fixed (or the length of the word-sequence),φ(Y1:T ,w1:i−1),
will be discussed.

1.5.1 Discriminative Alignment Models

These models have the same operation as the generative model alignment models con-
necting the L-length word sequence and the T -length observations sequence. If the sys-
tem is configured so that the lexicon defines a unique mapping from a state sequence to
word sequence 10, then

P(w1:L|θ1:T ) = 1 (1.61)

This then yields the following expression

P(w1:L|Y1:T ) =
∑

θ1:T∈{Θ}T

P(θ1:T |Y1:T ) (1.62)

An interesting aspect of this form of model is that all the history information, for both
the state sequence and observation sequence must be contained within the discriminative
acoustic model. This is more challenging than the generative model where the word
sequence is modelled separately (by the language model). The language model only
requires text training data, which odes not have to be in domain or have associated
acoustic data. Additionally the length of the state sequence is often significantly longer
than the word sequence, T > L.

The simplest option to address these issues is to combine the discriminative acoustic
model with a language score within a log-linear model framework. Thus

P(w1:L|Y1:T ) =
1

Z(Y1:T )
exp

αᵀ  log
(∑
θ1:T∈{Θ}T P(θ1:T |Y1:T )

)
log(P̃(w1:L)

 (1.63)

where the normalisation term Z(Y1:T ) ensures that this is a valid PMF and is a function

10 This has ignored hompohones for phonetic lexicons and homographes for graphemic (character) lexicons.
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of the observation sequence Y1:T . This term only impacts the training of the model, not
inference. Note P̃(w1:L) is used to denote the language model, rather than P(w1:L). This
is to emphasis the fact that the model can be trained on additional data and will not
necessarily be derivable, for example, from the final discriminative model.

Extensions beyond the simple, shallow combination, above is to separately train the
networks, one on the available language model data the other on the acoustic data, and
then combine using an additional network (Graves 2012). This is based on modelling
the joint distribution of the word and state sequence 11

P(w1:L|Y1:T ) ≈
∑

θ1:T∈{Θ}T

L∏
i=1

P(wi,θτ(i−1)+1:τ(i) |w1:i−1,θ1:τ(i−1) ,Y1:T ) (1.64)

where the joint distribution has been written in a conditional form with word wi and
word end-time τ(i) specified by the state sequence θ1:T . The conditional probability is
now expressed as a product of (separately trained) recurrent neural network experts

P(wi,θτ(i−1)+1:τ(i) |w1:i−1,θ1:τ(i−1) ,Y1:T ) =
1
Z

P̃(wi|w1:i−1)
τ(i)∏

t=τ(i−1)+1

P(θt |,θ1:t−1,Y1:T )


≈

1
Z

P̃(wi|h̃i−1)
τ(i)∏

t=τ(i−1)+1

P(θt |,ht−1)

 (1.65)

≈

τ(i)∏
t=τ(i−1)+1

P(θt |h̃i−1,ht−1)

where h̃i and ht are the hidden units, from the language and acoustic models respec-
tively. This is now an asynchronous factorial search problem jointly over the word se-
quence and word end-times. The form of probability P(θt |h̃i−1,ht−1) can be made rela-
tively simple, relying on the pretrained models to yield discriminative hidden vectors.

1.5.2 Discriminative Acoustic Model

The discriminative acoustic model has to handle the same problems as the generative
acoustic model described previously. Again dependencies will be described as Marko-
vian or non-Markovian.

1. Fully Markovian: here finite history dependencies are considered for both the state
and feature dependencies. Thus

P(θ1:T |Y1:T ) =

T∏
t=1

P(θt |yt, θt−1) (1.66)

This is the basis of the maximum entropy Markov model (MEMM) (Kuo & Gao
2006) shown in Figure 1.8(a).

11 The approximation results from inter-dependencies of the word and state, on future word and state
sequences have been ignored.
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Figure 1.8 Dynamic Bayesian Networks for different forms of discriminative models and the
nature of the dependencies.

2. State Markovian: again considering the form where the state posterior is dependent
on the complete history of observations.

P(θ1:T |Y1:T ) =

T∏
t=1

P(θt |Y1:t) (1.67)

Similar to the generative model form, this does not explicitly address the exponential
growth in the number of model parameters. An RNN can again be used where

P(θt |Y1:t−1) ≈ P(θt |yt,ht−1) ≈ P(θt |ht) (1.68)

where

ht = f (yt,ht−1) (1.69)

This is show in Figure 1.8(b). This is the form of model that is used in Connectionist
Temporal Classification (CTC) (Graves, Fernández, Gomez & Schmidhuber 2006).

3. Non-Markovian: it is also possible to include all dependencies in the system.

P(θ1:T |Y1:T ) =

T∏
t=1

P(θt |Y1:t,θ1:t−1) (1.70)

Incorporating a history vector, as shown in Figure 1.8(c), restricts the number of
model parameters. Here

P(θ1:T |Y1:T ) =

T∏
t=1

P(θt |Y1:t,θ1:t−1) ≈
T∏

t=1

P(θt |yt, θt−1,ht−1) ≈
T∏

t=1

P(θt |ht)(1.71)

where

ht = f (yt, θt−1,ht−1) (1.72)

Thus the vector ht represents both the state and the state sequence.

It is useful to briefly discuss the impact that the forms of the acoustic model de-
pendencies can have on the complexity of the inference, recognition, process. From



18

Equation 1.8 speech recognition requires computing

ŵ = arg max
w
{P(w|Y1:T )} = arg max

w


∑

θ1:T∈{Θ}
(w)
T

P(θ1:T |Y1:T )

 (1.73)

where {Θ}(w)
T is the set of all T -length state sequences that are possible for word se-

quence w. For models that Markovian in the states, for example those shown in Fig-
ure 1.8(a)(b), it is possible to use the efficient Viterbi algorithm (Viterbi 1967) to find
the optimal word sequence. For the non-Markovian case Figure 1.8(c) it is necessary to
compute

ŵ = arg max
w


∑

θ1:T∈{Θ}
(w)
T

T∏
t=1

P(θt |Y1:t,θ1:t−1)

 (1.74)

In this case it is not possible to use Viterbi as the probability of the state at time t, θt,
depends on the complete state history up to that time instance θ1:t−1.

1.5.3 Structured Discriminative Models

An alternative to the above form is to jointly model the word sequence, state-sequence
and observation sequence. To handle variable length sequences sequence kernels, and
their associated score-spaces, are used. These models are sometimes referred to as struc-
tured discriminative models (Gales, Watanabe & Fosler-Lussier 2012). Two forms of
model are possible depending on the nature of the normalisation:

• globally normalised:

P(w1:L|Y1:T ) =
1

Z(Y1:T )

∑
θ1:T∈{Θ}T

exp (αᵀφ(w1:L,θ1:T ,Y1:T )) (1.75)

whereφ(w1:L,θ1:T ,Y1:T ) generates a score-space from the word, observation, and
Z is the normalisation term.

• locally normalised:

P(w1:L|Y1:T ) =
∑

θ1:T∈{Θ}T

P(w1:L,θ1:T |Y1:T ) (1.76)

=
∑

θ1:T∈{Θ}T

1
Z(Y1:T )

exp (αᵀφ(w1:L,θ1:T ,Y1:T )) (1.77)

Both models make use of a general score-space function, φ(w1:L,θ1:T ,Y1:T ). This func-
tion makes this a very flexible model. For example one form of score space is related to
the generative classifier

φ(w1:L,θ1:T ,Y1:T ) =


log(p(Y1:T |θ1:T ))
log(P(θ1:T |w1:L))

log(P(w1:L))

 (1.78)

A key issue for these log-linear models, and other models, is to map variable length
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sequences of vectors or scalars to a fixed length feature vector (or scalar). For example
consider the T -length observation sequence Y1:T , where the length T can vary. This is
converted to a fixed length vector c for all possible T using

Y1:T → φ (Y1:T ) = c (1.79)

A very simple form of function is shown in Equation 1.78 where the variable length se-
quence is mapped to a log-probability using a statistical model. Other more complicated
forms of mapping have also been proposed for both continuous (Smith & Gales 2002)
and discrete (Cortes, Haffner & Mohri 2004). More recently the history vector represen-
tation from the RNN (or LSTM), ht−1 have also been proposed (Lu, Kong, Dyer, Smith
& Renals 2016). These sequence kernels also have close connections to the encoder-
decoder models described in the next section.

1.5.4 Encoder-Decoder Networks

An alternative approach is to use an encoder-decoder framework (Sutskever, Vinyals &
Le 2014). Originally this was used for machine translation, but the description here will
be in terms of speech recognition. A neural network is used to encode the observation
sequence Y1:T into fixed length feature vector c in the same fashion as the sequence ker-
nel in the previous section. The probability of the word sequencew1:L is then computed
conditioned on c. Thus

P(w1:L|Y1:T ) =

L∏
i=1

p(wi|w1:i−1,Y1:T ) ≈
T∏

t=1

p(wi|wi−1,hi−2, c) (1.80)

where c = φ(Y1:T ). The power of this encoder-decoder framework compared to stan-
dard sequence kernel score-spaces is that the fixed length mapping is optimised in an
end-to-end fashion with the recognition system.

yt+1

th

yT

hTT−1h

yt

ht−1

hi−1 ih
~ ~

Decoder

Encoder

iw
i+1

w

Figure 1.9 RNN-based encode-decoder model

The original encoder-decoder model was based on RNNs. This is illustrated in fig-
ure 1.9. Here the vector c is set to the final value of the history vector the encoder RNN,
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hT . An RNN is also used as the decoder for the word-sequence. Thus

P(w1:L|Y1:T ) ≈
L∏

i=1

P(wi|w1:i−1,hT ) ≈
L∏

i=1

P(wi|h̃i−1,hT ) (1.81)

Though it is possible to use this form of model for speech recognition there is significant
loss of information by encoding the complete observation sequence into a single vector.
A more powerful form of model is based on

P(w1:L|Y1:T ) =

L∏
i=1

p(wi|w1:i−1,Y1:T ) ≈
T∏

t=1

p(wi|h̃i−1, ci) (1.82)

where the complete set of feature history vectorsH1:T = {h1, . . . ,hT } is used,

ci = φ(w1:i−1,Y1:T ) = φ(h̃i−1,H1:T ) (1.83)

Attention-based approaches of this form have been used for speech recognition (Chorowski,
Bahdanau, Serdyuk, Cho & Bengio 2015)

ci =

T∑
τ=1

αiτhτ; αiτ =
exp(eiτ)∑L
j=1 exp(ei j)

, eiτ = f e
(
h̃i−1,hτ

)
(1.84)

One issue that has been observed with these forms of model is that the attention can
drift in a non-causal (left-to-right) fashion.

1.6 Probability Distributions over Sequences

A general problem, applicable to other research areas, is how to obtain a distribution
over a variable length sequence of observations. It is necessary to be able to generate
samples from sequences whose length has never been seen in the training data. Distri-
butions over the data have already been described in section 1.3. Take the example of
an RNN generative model. Here

p(Y1:T ) =

T∏
t=1

p(yt |Y1:t−1) ≈ p(y1)
T∏

t=2

p(yt |ht−1) (1.85)

where

ht = f (yt,ht−1) (1.86)

Generating an sequence from length T from this distribution simply requires generating
an initial sample from p(y1) and then recursively generating samples. Usually Gaus-
sian distributions for continuous variables, and multinomial distributions for discrete
variables, are used for th form of the distributions. Extensions of this form of model,
bidirectional models and latent variable models, are also described in section 1.3.

One issue that can arise from simply relying on the history vector from the RNN,
ht−1, to contain all the necessary information from the complete back-history of samples
Y1:t−1. In practice this is not always possible. This section discusses the general issue
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of distributions for variable length sequences, and the use of the product of experts
framework (Hinton 1999) to address this problem.

1.6.1 Product of Experts

In the product of experts framework for sequence data the temporal structure of the data
is modelled by a set of experts. The overall distribution of a T -length sequence can then
be expressed in terms of the product of the information from all the experts. Thus

p(Y1:T ) =
1
Z

 E∏
e=1

p(F (e)(Y1:T ))α
(e)

 (1.87)

or expressed as a log-probability

log(p(Y1:T )) = − log(Z) +

E∑
e=1

α(e) log(p(F (e)(Y1:T ))) (1.88)

Here Fe(Y1:T ) is the feature functions associated with an expert that yields a value from
the observation sequenceY1:T . The challenge is to enable the distributions to be obtained
for any value of T , the core issue in sequence modelling. As sequences are being dealt
with there is additional flexibility in the nature of the experts compared to non-sequence,
static, tasks. The experts can be split into two distinct groups

• fixed-length sub-sequence, F (e)
f

(Yt−Ne:t+Ne ). This may include information about the
current value, local gradient and acceleration;

• attributes of the complete sequence, F (e)
s (Y1:T ). The most common example of this

is the use of global variance.

In both cases it is possible to model any arbitrary length sequence, though the ap-
proaches to handling variable length data is very different. Now 12

log(p(Y1:T )) = (1.89)

−T log(Z) +

T∑
t=1

Ef∑
e=1

α(e)
f

log(p(F (e)
f

(Yt−Ne:t+Ne ))) +

Es∑
e=1

α(e)
s log(p(F (e)

s (Y1:T )))

As with standard statistical modelling approaches training and inference needs to be
considered. There are two approaches to training the models. First each of the experts
is separately trained and only combined at the end to yield the final distribution. This
simplifies the training problem as the normalisation term Z is not considered during
training. Additionally at synthesis time where either a sample sequence, or the mean
sequence is used it is not needed. The second approach is to optimise the likelihood of
the set of experts generating the training data. These two approaches will be discussed
in more detail in section 1.7.

12 For simplicity of notation “end-effects” are being ignored here so that the summation is not a function of
the maximum span of all the experts. The span is also specified as symmetric.
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1.6.2 Gaussian Experts and Linear Feature Functions

The general product of experts system described above has not discussed the form of
the expert distribution, or the nature of the expert. The simplest approach is to restrict
the experts to all be Gaussian acting on a fixed-length sub-sequence, and the feature
functions to be linear (Zen et al. 2012). In this situation it is possible to define a linear
transformation A(e) for each expert e, such that for a particular expert e

F
(e)
f

(Yt−Ne:t+Ne ) = a(e)ᵀ


yt−Ne

...

yt+Ne

 = a(e)ᵀy(e)
t ∼ N(µ(e), σ(e)2) (1.90)

Using this form of representation it is possible to define for a T -length sequence a
mean vector, µT , covariance matrix, ΣT , and transformation matrix, AT . For example if
Ne = 1 (so y(1)

t = y(2)
t = y(e)

t ) 13 for two experts and three, d-dimensional, observations
(with zero padding) , 0d indicates a d-length row vector of zeros,

a(1)ᵀ 03d 03d

a(2)ᵀ 03d 03d

03d a(1)ᵀ 03d

03d a(2)ᵀ 03d

03d 03d a(1)ᵀ

03d 03d a(2)ᵀ


 y

(e)
1
y(e)

2
y(e)

3

 =



a(1)ᵀ 0d 0d

a(2)ᵀ 0d 0d

0d a(1)ᵀ 0d

0d a(2)ᵀ 0d

0d 0d a(1)ᵀ

0d 0d a(2)ᵀ




0
y1
y2
y3
0

 = A3


0
y1
y2
y3
0

 (1.91)

The distribution for this transformed data can be expressed as

A3


0
y1
y2
y3
0

 ∼ N




µ(1)

µ(2)

µ(1)

µ(2)

µ(1)

µ(2)


,



σ(1)2 0 0 0 0 0
0 σ(2)2 0 0 0 0
0 0 σ(1)2 0 0 0
0 0 0 σ(2)2 0 0
0 0 0 0 σ(1)2 0
0 0 0 0 0 σ(2)2




= N

(
µ3,Σ3

)
(1.92)

As the overall “transformed” sequence distribution is Gaussian, and the relationship
of the original sequence to the transformed sequence is linear, it can be shown that
the resulting distribution of the original sequence is Gaussian. This distribution can be
expressed in the following form for a general T length sequence

p(Y1:T ) = N

(
Y1:T ;

(
A
ᵀ

TΣ
−1
T AT

)
A
ᵀ

TµT ,
(
A
ᵀ

TΣ
−1
T AT

)−1
)

(1.93)

Thus the effective mean, µ̃T , and covariance matrix, Σ̃T of the complete T -length ob-
servation sequence may be expressed as

µ̃T = Σ̃T A
ᵀ

TµT , Σ̃T =
(
ATΣT A

ᵀ

T

)−1
(1.94)

So the distribution depends on both the parameters of the experts and the length of the
observation sequence. For long sequences this inversion process can become computa-
tionally expensive.

It is sometimes useful to relax the restriction of only extracting linear transformations

13 This is not a restriction as it is possible to specify Ne to be the maximum sub-sequence length.
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of sub-sequences for the experts. One example often used for speech synthesis is the
global variance expert (Toda & Tokuda 2007). Here the variance of each dimension, i,
of the observation sequence is extracted as a feature

Fgvi(Y1:T ) = σ2
gvi =

T∑
t=1

(
yti − µgvi

)2 (1.95)

where µgvi is the mean of dimension i of the observation sequence. It may also be useful
not to limit the form of the distribution to be Gaussian. In these cases it is not trivial to
optimise the model parameters. To address this contrastive divergence based approached
can be used (Zen et al. 2012) to train the model parameters.

1.7 Training Criteria and Loss Functions

One of the interesting aspects of sequence-to-sequence models is the nature of the train-
ing criterion. Here, only supervised training will be discussed. Extensions to lightly-
supervised, semi-supervised and unsupervised are also possible (Lamel, Gauvain &
Adda 2002). Only give a top-level description of the criterion will be give. The details
of the optimisation approaches, and issues will be discussed elsewhere. The general
expression for training is

λ̂ = arg max
λ
{F (λ;D)} (1.96)

where for n utterances of supervised data

D =
{(
Y (1)

1:T (1) ,w
(1)
1:L(1)

)
, . . . ,

(
Y (n)

1:T (n) ,w
(n)
1:L(n)

)}
(1.97)

The de facto standard approach for training systems is to use maximum likelihood
(ML). However this term has different meanings depending on where generative or
discriminative models are being used:

• generative model: here the model parameters are tuned to maximise the joint prob-
ability

Fjnt(λ;D) =

n∑
i=1

log(p(w(i)
1:L(i) ,Y

(i)
1:T (i) ;λ)) (1.98)

More commonly the acoustic model is trained separately from the language model.
Thus

Fml(λ;D) =

n∑
i=1

log(p(Y (i)
1:T (i) |w

(i)
1:L(i) ;λ)) (1.99)

• discriminative model: here the model parameters are optimised to maximise the
probability of the word-sequence. To distinguish this form of optimisation from
the generative, this is often referred to as the Conditional Maximum Likelihood
(CML) training criterion (in speech recognition also referred to as Maximum Mu-
tual Information (MMI) training (Bahl, Brown, de Souza & Mercer 1986)).
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Fcml(λ;D) =

n∑
i=1

log(p(w(i)
1:L(i) |Y

(i)
1:T (i) ;λ)) (1.100)

1.7.1 Speech Recognition Criteria

Speech recognition is a classification task, usually based on Bayes’ decision rule (re-
peating equation 1.8 for clarity)

ŵ = arg max
w
{P(w|Y1:T ;λ)} (1.101)

Discriminative models directly estimate the word posterior, P(w|Y1:T ;λ). For genera-
tive models this posterior is obtained from

P(w|Y1:T ;λ) =
1

Z(Y1:T )
p(Y1:T |w;λ)P(w;λ) (1.102)

where Z is the normalisation term obtained by summing the joint distribution over all
possible word sequences. Thus during recognition time both generative and discrimina-
tive models require the calculation of the word posterior.

Initially generative models were trained using maximum likelihood for both acoustic
and language models. Later these generative models were trained using CML applying
Bayes’ rule to convert the joint distribution to a word posterior. For ASR other forms of
discriminative criteria have also been examined. Note the sane criteria can be used for
generative and discriminative models as both can represent the word posterior.

CML training is well motivated if the aim of the process is to obtain the system that
is linked to sentence (word sequence) level performance. Given that speech processing
task need to generate sub-sentence, and sub-word, models to handle the vast number
of possible sentences. One alternative, popular approach in speech recognition, is to
examine Minimum Bayes’ Risk (MBR) training (Kaiser, Horvat & Kačič 2000, Povey
& Woodland 2002, Byrne 2006, Gibson & Hain 2006). Here the models parameters are
estimated by minimising

Fmbr(λ) =

n∑
i=1

∑
w

P(w|Y (i)
1:T (i) ;λ)L(w,w(i)

1:L(i) ) (1.103)

where L(w,w(i)
1:L(i) ) is the loss between the reference word sequence, w(i)

1:L(i) , and the
“hypothesis”. The loss function can be measured at various levels. Common forms are,
sentence, word, phone and state. This form of criterion, and related criteria such as
Minimum Classification Error (MCE) (Juang & Katagiri 1992), have been applied to a
range of speech recognition tasks.

An interesting modification to the standard forms of MBR training in speech recog-
nition, is to consider the loss function at the frame level , referred to here as minimum
frame risk (Zheng & Stolcke 2005). Here

Fmfr(λ) =

n∑
i=1

∑
w

∑
θ:|θ|=T (i)

P(w|θ;λ)P(θ|Y (i)
1:T (i) ;λ)L(θ, θ̂(i)

1:T (i) ) (1.104)
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where θ̂(i)
1:T (i) is the reference frame-level alignment. The loss at the frame can then be

considered at various levels in the same fashion as standard Bayes’ risk training.
The final class of criteria introduce a margin into the estimation process. One form

that has been used for discriminative models is to minimise the following large-margin
criterion (Sha & Saul 2007, Zhang & Gales 2012)

Flm(λ) =

n∑
i=1

max
w,w(i)

1:L(i)

L(w,w(i)
1:L(i) ) − log

P(w(i)
1:L(i) |Y

(i)
1:T (i) ;λ)

P(w|Y (i)
1:T (i) ;λ)


 (1.105)

One of the interesting aspects of this criterion is that the normalisation term, that usually
impacts the training, is not part of the criterion. The posterior ratio means that it is
cancelled from numerator and denominator. When a log-linear model used, and only
the best state or phone sequence taken into account, this yields a Structured Support
Vector Machine (SSVM) (Tsochantaridis, Joachims, Hofmann & Altun 2005).

1.7.2 Speech Synthesis Criteria

Speech synthesis is a regression process, generative in nature. Repeating equation 1.12

Ŷ = arg max
Y
{p(Y |w1:L;λ)} (1.106)

This ties in closely with the standard ML criterion for generative models. If multiple ex-
perts are used to generate smooth trajectories, then the following criterion is maximised

Fml(λ) = arg max
λ


n∑

i=1

log

p



F1(Y (i)

1:T (i) |w
(i)
1:L(i) )

...

FE(Y (i)
1:T (i) |w

(i)
1:L(i) )

 ;λ



 (1.107)

where λ comprises the parameters for the complete set of E experts. This maximises
the likelihood of each of the individual experts rather than the generated trajectories.

An alternative approach is based on the trajectories generated by the experts. The first
option, similar to ML training, is to find the parameters of the experts that maximise the
likelihood of complete trajectory (Zen et al. 2007).

Ftraj(λ) = arg max
λ

 n∑
i=1

log
(
p
(
Y (i)

1:T (i) |w
(i)
1:L(i) ;λ

)) (1.108)

This is the criterion related to the trajectory model, Figure 1.4. A second criterion is
based on the “difference” between the trajectory generated by the model and the training
data trajectory (Wu & Wang 2006). Here

Fmge(λ) = arg max
λ


n∑

i=1

T (i)∑
t=1

D (yt, ŷt)

 (1.109)

where D(yt, ŷt) is a frame-level distance, generation error, between the observation at
time instance t, yt, and the ML-generated trajectory ŷt. When the frame-level distance
measure is euclidean then this is related to the trajectory model, with the constraint
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that the variance of the trajectory is an identity matrix. However this form of criterion
has significant flexibility in terms of the distance being used, allowing for example
perceptual based weighting to be included.

One important difference between the trajectory criterion and the generation error
is in the handling of the alignment, duration, model p(θ1:T |w1:L). For the MGE crite-
rion “reference” durations need to be used as the sequences need to be time-aligned 14.
The alignment model training is not integrated with the expert parameter training. Con-
versely for the trajectory criterion an integrated approach can be adopted.

1.8 Summary

This report has briefly reviewed sequence modelling in general and more specifically
sequence-to-sequence modelling. Both generative and discriminative forms of sequence-
to-sequence models are described. Central to many of these are conditional indepen-
dence assumptions that allow variable length sequences to be efficiently modelled. Ad-
ditionally other forms of model, incorporating deep-learning approaches are described.
Finally forms of distribution over sequences are described, as well as various forms of
speech recognition and synthesis criteria.

14 More generally sequence kernels could be used.
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