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Abstract

Interest continues in a class of robustness algorithms for speech recognition that exploit the notion of uncertainty
introduced by environmental noise. These techniques share the property that the uncertainty varies with the noise level
and is propagated to the decoding stage, resulting in increased model variances. In observation uncertainty forms, the
uncertainty variance is simply the variance of the error in enhancement that is added to the model variances. Another
form, called uncertainty decoding, refers to a factorisation which results in a linear feature transform and model
variance bias that increases with noise; using appropriate approximations, efficient implementations may be obtained,
with the goal of achieving near model-based performance without the associated computational cost. Unfortunately,
uncertainty decoding forms that compute the uncertainty in the front-end and pass this to the decoder may suffer
from a theoretical problem in low signal-to-noise ratio conditions. This report discusses how this fundamental issue
arises, and demonstrates it through two schemes: SPLICE with uncertainty and front-end joint uncertainty decoding
(FE-Joint). A method to mitigate this for FE-Joint compensation is presented, as well as how SPLICE implicitly
addresses it. However, it is shown that a model-based joint uncertainty decoding approach does not suffer from this
limitation, like these front-end forms do, and is more computationally attractive. The issues described and performance
of the various schemes are examined on two artificially corrupted corpora: the AURORA 2.0 digit string recognition
and 1000-word Resource Management tasks.
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1. Introduction 1995), vector Taylor series-based (VTS) compensa-
tion (Kim et al., 1998; Acero et al., 2000) and more

Improving the noise robustness of state-of-the-art recently ALGONQUIN (Kristjansson and Frey, 2002)

automatic speech recognisers continues to be an im-
portant research area. Current continuous density
HMM systems perform well on clean, uncorrupted
speech, but in practice falter in noisy usage condi-
tions. Model-based compensation techniques, which
update the acoustic model means and variances,
such as Parallel Model Combination (PMC) (Gales,
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have shown to be very effective forms of environ-
mental noise compensation. Unfortunately, these
are computationally expensive compared to less
powerful front-end feature enhancement techniques
like spectral subtraction and cepstral mean nor-
malisation, that only compensate the noisy speech
features.

Recently, research has focused on extending
feature-based schemes by incorporating the un-
certainty due to noise into the recognition search.
Observation uncertainty forms, as termed in this
paper, do so in an ad hoc fashion, by adding an un-
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certainty variance to HMM variances to represent
the residual observation uncertainty after enhance-
ment. The uncertainty, for example, may be based
on the position of formants (Holmes et al., 1997),
from a polynomial function of the signal-to-noise
ratio (Arrowood and Clements, 2002), or the vari-
ance of the enhancement process (Deng et al., 2002;
Benitez et al., 2004; Stouten et al., 2004; Deng
et al., 2005; Wolfel and Faubel, 2007). In contrast,
uncertainty decoding may be viewed as propagat-
ing the conditional probability of the corrupted
speech, given the “clean” speech, into the decoding
stage (Droppo et al., 2002; Liao and Gales, 2005).
These two distinctly different approaches yield a
similar form: the uncertainty is calculated efficiently
in the front-end, and passed to the recogniser as
a single, simple variance offset to the recognition
model components. This can provide an elegant
compromise of a fast feature-based compensation
scheme with model-based accuracy.

Observation uncertainty techniques have demon-
strated good results for a variety of tasks and envi-
ronments, however they suffer from some inherent
flaws. Observation uncertainty has been derived in-
tuitively; some results show that the variances are
ill-conditioned (Stouten et al., 2004; Deng et al.,
2002) and gains disappear with adaptation (Wolfel
and Faubel, 2007) . For front-end uncertainty de-
coding Droppo et al. (2002), there is a fundamen-
tal problem in low SNR when the noise masks the
speech (Liao and Gales, 2006). Since a transform
is selected in the front-end, which modifies all the
model variances during decoding, in low SNR all the
models may be altered to be the same. Hence no dis-
crimination is possible, and if there are no other con-
straints such as a strong language model, then large
numbers of insertions can take place in these ar-
eas of high uncertainty. Because model-based uncer-
tainty decoding explicitly associates the corrupted
speech conditional with the clean speech distribu-
tion, it does not suffer from this problem.

This paper discusses these issues in detail. Sec-
tion 2 describes some feature enhancement schemes
and how they can be extended to include uncer-
tainty. This extension gives a similar decoding form
to the front-end uncertainty decoding method re-
viewed in section 3. The fundamental problem with
front-end uncertainty decoding is elaborated on in
section 4 and demonstrated through the SPLICE
with uncertainty and front-end joint uncertainty
decoding techniques. We show that model-based
uncertainty decoding does not suffer from this prob-

lem, is more effective, and at least as efficient as
front-end forms. In chapter 5, these issues and tech-
niques are evaluated on two artificially corrupted
corpora: the often used small vocabulary AURORA
2.0 noisy digit string recognition task (Hirsch and
Pearce, 2000) and the 1000-word Resource Man-
agement command and control database (Price
et al., 1988). Overall conclusions and future work
directions are presented in section 6.

2. Feature enhancement

Traditionally, fast front-end noise compensation
techniques, such as spectral subtraction and more
recently SPLICE (Deng et al., 2000), have removed
the noise from the observed noisy, corrupted speech
vector y,, and passed this estimate &; as if it were
exactly the original clean speech vector x; to the
acoustic models as shown in Fig. 1. Hence, the de-
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Fig. 1. The standard feature enhancement process.

Corrupted Yt
Speech

Feature

Compensation Hypothesis

coding likelihood, at time frame ¢, is simply the eval-
uation of the enhanced clean speech against the un-
compensated clean acoustic models

p(ythaMaet) :p(it|Magt) (1)

where M represents the set of clean acoustic model
parameters, M represents some set of front-end
parameters which may include noise or simplified
speech models, and 6; denotes the hidden clean
speech state.

Simple enhancement schemes tend to be very ef-
ficient and take the following form

ﬁ?t :g{mtkljt,./\;l} (2)

The enhancement is based on the front-end param-
eters M and is usually independent of the actual
acoustic model parameters M; if the size of M is
small, the enhancement may be fast. A recent algo-
rithm, based on this framework, is called SPLICE.
SPLICE partitions the noisy acoustic space using a
front-end GMM with N components. The expected
value of the clean speech given the corrupted speech
is modeled by a piece-wise, linear function depend-
ing on the region in the acoustic space



ﬁjt ~ ZP(n|ytaM)g {wtlytaMan} (3)

with the posterior distribution of component n de-
fined as

Enp (Y M, )

N . -
2 iz GiP (yt M, ")
where ¢, is the component prior. The expected value

of the clean speech posterior £ {a:t|yt, M, n} is the
mean of

P(nly,, M) = (4)

p(:l:t|’yt,/\;l,n) %N(whyt +p{(n)’i(n)) (5)

which leads to

g{mt|yt7M7n} ~ yt + ﬂ(n) (6)

Often the SPLICE form in equation 3 is simplified
by only applying the bias associated with the most
likely component n* of the corrupted speech Gaus-
sian mixture model (GMM)

it:g{w”yta-/\;l’n*} (7)
=y, + ") (8)

Here, the corrupted speech is updated simply by
the bias vector ﬂ(”*), which is the expected value of
difference between the clean and corrupted speech,
associated with the most probable region n* in the
acoustic space. This is then used during decoding
as representative of the clean speech feature vector.
The corrupted acoustic space GMM with N compo-
nents is given by

N
p(yM) =D énp(y,IM,n) 9)
n=1
N
=Y &N (yt; e, 215")) (10)
n=1

and the most likely component is determined by
n* = argmax [énP(yt|M,n)] (11)
n

The correction vectors can be estimated using stereo
data? with the following formula

2 In this paper, stereo data refers to two parallel channels of
audio, with one providing a recording of clean speech data
and the other a noisy version of the exact same acoustic
speech.

@ = & {@, — y,n} (12)
57 =& {(e — ) (@ —y)TIn} — 4™ AMT (13)

SPLICE has shown to be quite an effective compen-
sation algorithm on the standard AURORA cor-
pus (Droppo et al., 2001). It is efficient since the fea-
ture update is fast. The main cost is the N Gaussian
evaluations in equation 11 to choose the acoustic re-
gion and associated correction bias.

2.1. Observation uncertainty

Traditional standard enhancement schemes that
only update the feature vector and pass this on
as if it were the true clean speech to the decoder,
have recently been extended to reflect uncertainty
of the de-noising process itself. Instead of assum-
ing the feature cleaning process is exact, the pos-
terior p(x¢|y,, M) is passed to the acoustic mod-
els, representing the uncertainty in the compensa-
tion. The mean of this distribution is the estimate
Z, but with an associated variance that may be the
expected square error of the enhancement. This pa-
per refers to this approach as observation uncer-
tainty, although it has also been called uncertain ob-
servations or uncertain observation decoding in Ar-
rowood and Clements (2002) and more confusingly
referred to as uncertainty decoding, which is su-
perficially similar but fundamentally different. This
scheme is depicted in Fig. 2 which can be compared
with Fig. 1.
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Fig. 2. The observation uncertainty form.
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Thus if the clean speech feature vector is now con-
sidered a multivariate Gaussian distribution x; ~
N (&4, 35), the decoding likelihood requires integra-
tion over all possible values

p(yt|M7M;0tam)
R /Rd p(xely,, M)p(x:| M, 0;)da, (14)
= N(wt; ﬁ:t, E,}) N(wt; [.L(m), E(m))dwt (15)
Rd

= N(ﬁ:t; pm s (m) 4 2ﬁ) (16)



Here &; is again the clean speech estimate, as is
normally produced from standard enhancement
schemes; the parameters p(™ and =™ denote
the mean and variance of Gaussian m in the clean
speech acoustic model M used for decoding. The
variance offset X3 is the expected square error of
this enhancement process. In SPLICE this is

2, =" (17)

and can be estimated from stereo data as in equa-
tion 13. Other enhancement schemes can be eas-
ily extended to provide this variance, for example
considering formant frequencies as part of a heuris-
tic measure (Holmes et al., 1997); using a weighted
polynomial function of the SNR in the log spec-
tral domain Arrowood and Clements (2002); or ob-
taining them from a parametric model of the clean
speech (Deng et al., 2002), the classic Weiner fil-
ter (Benitez et al., 2004) or a particle filter (Wdlfel
and Faubel, 2007).

An interesting observation uncertainty form is
the model-based feature enhancement (MBFE)
technique extended to account for observation un-
certainty (Stouten et al., 2004). It is notable because
like the front-end joint uncertainty decoding form
discussed in the next section, a GMM is embedded
in the front-end and a joint distribution between
the clean and corrupted speech is computed for
each component. MBFE differs in that the joint
distribution is used to compute the clean speech
posterior, where the clean speech estimate for a
particular component n is

~\n n n n)\ -1 n

& = ul + 30 (500) " (3, - ul) (18)
and the associated variance or uncertainty

2 = 5 — 5 (sm) s (19)

In this form of enhancement, as described in Stouten
et al. (2004),the final clean speech estimate is formed
by summing over all the estimates, weighted by the
component posterior, rather than just choosing the
most likely state as in the SPLICE form.

The computational cost of using observation
uncertainty is similar to standard enhancement
scheme. However the uncertainty that is propa-
gated for the current frame must be added to all
acoustic model components. This can total in the
hundreds for a small task, such as in the reference
AURORA recogniser (Hirsch and Pearce, 2000),
to the hundred of thousands in state-of-the-art

recognition systems such as the CU Broadcast
News system (Kim et al., 2003). Moreover, this
variance addition is not as simple to apply as, for
example, a scaling of the variances—the Gaussian
normalisation term that is usually cached must be
re-computed. As stated in Arrowood and Clements
(2002), assuming that Gaussian evaluations com-
prise 50% of the total computation cost of tran-
scribing speech, the overhead of adding uncertainty
is approximately 33%. Nevertheless, applying this
variance update with a single global uncertainty is
far cheaper than expensive model-based techniques
such as VTS compensation, PMC or ALGONQUIN
which separately update each acoustic model com-
ponent individually depending on the effects of the
noise on that Gaussian.

While in practice good results have been obtained
using observation uncertainty (Benftez et al., 2004;
Deng et al., 2002; Stouten et al., 2004; Wolfel and
Faubel, 2007), there is a concern. Despite the pre-
sumption that enhanced observations may not be
exact seems sensible, the resulting decoding form
given in equation 14 do not appear to arise from any
mathematical framework. Perhaps this is why the
variances propagated seem ill-conditioned: they are
deemed too large and imprecise (Deng et al., 2002),
reduced by a factor of ten (Stouten et al., 2004), hurt
performance compared to standard enhancement in
higher SNR (Benitez et al., 2004), or give improve-
ments which disappear with adaptation (Wolfel and
Faubel, 2007). Hence, although gains have been ob-
tained using this technique, it may be viewed as a
heuristic, ad hoc approach.

3. Uncertainty decoding

In this section, the uncertainty decoding frame-
work from (Droppo et al., 2002; Liao and Gales,
2005) is described along with two forms that exem-
plify it. A model of the corrupted speech as a func-
tion of the clean speech and noise can be expressed
by a dynamic Bayesian network (DBN) as shown in
Fig. 3. Here, the corrupted speech observation y, is

Fig. 3. Uncertainty decoding DBN.



assumed to be conditionally independent of all other
observations given the clean speech x; and the noise
n;. The clean speech and noise are assumed to be
generated by HMMSs with states 62 for the noise®
and 6; for the clean speech. Under these assump-
tions the corrupted speech likelihood is given by

P M. M.00=[ plurlen, Mp(aM.0)de (20)
where

p(y,|xe, M) = /Rd p(yy| e, ne)p(ne| M, 02)dmy (21)

The likelihood calculation thus has two distinct
parts. Only the first, p(y;|e;, M), is a function
of the noise, the other is the clean speech prior
which is not dependent on the noise. Hence, this
marginalisation is independent of the noise given

p(y,|ze, M). This uncertainty decoding framework
can be depicted as shown in Fig. 4.
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Fig. 4. Uncertainty decoding framework.
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The term uncertainty decoding can be considered
to encompass forms that exploit this factorisation by
determining an efficient approximation for the con-
ditional distribution p(y,|x;, M) that easily com-
pletes the marginalisation and is cheap to compute.
This distribution, conditioned on the clean speech,
can be decoupled from the structure of the actual
acoustic models. Thus there is significant freedom
in choosing an appropriate form for this distribu-
tion that minimises the computational cost. Front-
end uncertainty decoding forms decouple M and M
completely and assure, through a series of approx-
imations, that the information passed along to the
decoding stage depends solely on the observed fea-
tures. Model-based uncertainty maintains some cou-
pling between the model components in M and M,
which leads to uncertainty information that is de-
pendent on the “class” of the acoustic model com-
ponent being passed to the decoder. In pure model-
based approaches, such as ALGONQUIN, PMC or VTS
compensation, the two distributions are fully tied
by the clean speech variable. These explicitly com-
pute the conditional for each model component, best

3 A single state is assumed for the noise model in this paper.

reflecting the affect of noise on the model distribu-
tions, but at a significant computation cost.
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1
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Fig. 5. Joint distribution p(z,y). Additive noise is N'(3,1).

3.1. Front-end uncertainty decoding

In front-end uncertainty decoding, a major focus
is determining a form for the conditional distribu-
tion p(y,|x;, M) that can be efficiently computed,
and is independent from the back-end acoustic mod-
els. The nature of the conditional can be explored
by examining the joint clean-corrupted speech dis-
tribution as shown in Fig. 5. This simulation, which
has also been detailed in Liao and Gales (2004)
and Benitez et al. (2004), takes place in the log en-
ergy domain where z represents the clean speech
and y the noise corrupted speech, where it is as-
sumed that y = log(exp(z) + exp(n)). The clean
speech is a uniform distribution over [0, 8] and the
additive noise a constant Gaussian of mean 3 and
variance 1. This relationship is highly non-linear es-
pecially in the low SNR region to the left and clearly
non-Gaussian. Nevertheless, the approach taken in
front-end uncertainty decoding is to represent the
corrupted speech conditional given the clean speech
with a GMM. By selecting a single, most probable
component of the GMM given the observed noisy
data, a single variance offset per frame is passed to
the acoustic models during decoding. This is an ap-
proximation for efficiency, since not doing so would
cause the complexity in the front-end process to mul-
tiply with the number of components in the back-
end. The use of Gaussian distributions makes the
marginalisation in equation 20 trivial. In this way,



an elegant compromise is achieved with fast front-
end processing providing a simple acoustic model
update.

Currently, two specific forms of front-end un-
certainty decoding have been presented in the lit-
erature: SPLICE with uncertainty (Droppo et al.,
2002) and the front-end joint uncertainty decod-
ing (FE-Joint) method (Liao and Gales, 2005).
For both, the resultant likelihood of the corrupted
speech observation using the uncertainty param-
eters selected from component n of the front-end
GMM can be expressed as

Py MM, 6;)

Y emN (A(")yt+b(”); p(m) 3 0m) 4 Ef,")) (22)
mebh,

where A(n), 5™ and 21(,") are the compensation pa-
rameters. In form, this is exactly the same as the
observation uncertainty approach, as given in equa-
tion 16, with

&=AMy, +p™ (23)
B =3 (24)

but the parameters are derived from a fundamen-
tally different perspective. SPLICE with uncertainty
and the FE-Joint scheme have different methods of
deriving these parameters. These two forms are dis-
cussed in further detail in the following sections.

3.1.1. SPLICE with uncertainty

SPLICE with uncertainty makes use of Bayes’ rule
to express the conditional probability of the cor-
rupted speech given the clean speech in terms of the
clean speech posterior distribution. For tractability,
the denominator clean speech prior is modeled by a
single Gaussian with the mean and variance for di-
mension i denoted by fi, ; and 72 ;. Using this ap-
proximation, with the restriction that matrices A
and ={™ are diagonal, gives

i
5_(7:,)2

bgn) =az(in) (ﬂSn) — 2 /—M’z) (26)
az,i

o) = aff o™ (27)

The parameters /i and 5.7 may estimated us-

ing equations 12 and 13. In order to ensure that the

uncertainty variance bias 21(,") is positive, the de-
nominator in equation 25 is floored. In this work the
floor is set to a fraction « of the global clean vari-
ance o5 ;. This floor effectively places a maximum
(n)

it

_2 .
a{™ = min 1 % (28)
it a ) 52 ' (n)2

The effects of this are discussed in section 4.

value on a;;’ where

3.1.2. Front-end joint uncertainty decoding

In the front-end version of JUD, FE-Joint, the
corrupted speech conditional distribution given the
clean speech is directly modeled by a GMM. To de-
rive this conditional, a joint distribution of the clean
and corrupted speech is estimated for each region of
the acoustic space. For component n of the front-
end corrupted speech GMM the joint distribution is
assumed to be Gaussian with parameters

u@ ] [se s
= 5

Tt

~N

) (29)
Yy Ky

The joint distribution parameters may be estimated

from stereo data or predicted using a model-based

technique such as VTS compensation (Xu et al.,

2006). From the joint distribution, the conditional

distribution can be derived as follows

p(ytlwtaMan) (30)

~ Ny ) + BB @, — ),
31)
1
OIS > 2(;;))

=[APN(E B0 Hy )+l

(53 L33 g L) O
1@ SIES (RPN IR ¢ )
=[APN (AP y, + 602, 5(7) (33)

If instead of using the full GMM to represent the con-
ditional, only the one associated with the most prob-
ably corrupted speech component n is used, then the
compensation parameters in equation 22 are given
by

A =5 (34)
p(™ — “;n) _ A(")p?(l”) (35)
B =AWEMm AT _5m (36)

Though the joint covariance matrix terms in equa-
tion 29 may be full, they may be diagonalised to
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Fig. 6. Model-based joint uncertainty decoding.

make A™ and Ef,”) diagonal for efficiency. Also,
the normalisation term |A(")| in equation 33 is not
necessary since it is the same for all likelihood cal-
culations for each time frame. The selection of the
appropriate conditional distribution based on the
observed corrupted speech, rather than the hidden
clean speech, is a significant approximation and is
discussed in more detail in Liao and Gales (2004).

It is interesting to compare these parameters with
the ones derived using the clean speech posterior in
the MBFE observation uncertainty form given by
equations 18 and 19. Although both estimate joint
distributions for front-end components representing
acoustic regions of the corrupted speech space, and
have similar decoding likelihood forms, the actual
compensation parameters are completely different.
For MBFE with uncertainty these are

n n n)-1
A =55 (37)
p(™ — u;n) _ A(n)p,;n) (38)
M =2 =% _ aAWxM (39)

Note in the original form (Stouten et al., 2004), the
clean speech estimate is formed from a weighted con-
tribution from all the components in the front-end
GMM, not just the most likely.

3.2. Model-based uncertainty decoding

In the previous section describing front-end un-
certainty decoding, the conditional distribution
in equation 21 is completely decoupled from the
acoustic models. However, more precise forms can
arise from maintaining this link. In the ALGONQUIN
scheme, an interaction likelihood ¥ (Kristjansson
and Frey, 2002) captures the residual error in the
mismatch function f(wx¢,m¢). This is propagated
to the recognition search as the conditional in the
uncertainty decoding framework

p(y,lee) = N(yy; £, 1), P) (40)

However, these model-based schemes are known
to be computationally expensive. For instance,

ALGONQUIN uses a variational Bayes algorithm to it-
eratively approximate the non-Gaussian corrupted
speech distribution; this is conducted for every
recognition component. Therefore, ALGONQUIN is
comparable in form to pure model-based schemes
such as PMC or VTS compensation as the effect
of the noise is considered independently for each
acoustic model component.

Model-based joint uncertainty decoding (M-Joint) (Liao

and Gales, 2005) sits in a middle ground between
front-end JUD and pure model-based forms. The
uncertainty parameters are estimated for a group
of similar acoustic model components rather than
globally in the front-end or for each model compo-
nent separately. Compared to front-end uncertainty
decoding, instead of having each component in the
front-end associated with a region of acoustic space
n, link it to a set of similar recognition model com-
ponents r. For example, one may choose to have
two recognition classes, one for silence and another
for speech; more classes may be derived by using
a regression tree depending on the amount of data
available (Shinoda and Watanabe, 1995). The joint
distribution can then be computed over this class of
recognition components 7 where the mean vectors
and covariance matrices of the clean and corrupted
speech are given by

(r) — ZmEr ’Yt(m)mt 41
Hg ' = (m) (41)
ZmEr Ve
(m)
(r _ Zmer %" Yy 4
By = (m) ( 2)
Zmer Ve
(m) T
() _ Dmer Vi Ty (), ()T
mer
(m) T
(r) _ 2omer Ve YiYi T
S e ke (4
mer
where %‘m) is the component posterior at time in-

stance t given the observation sequence. The no-
te}t‘lon Y omer denotes.summatlon over the recog-
nition components m in model class r. The cross-



covariance terms between the clean and corrupted
speech are then given by

Em T’Y(m)wty—r r),,(r
Zmer BV ()07 (45)
EmEr Ve

Having obtained the joint distribution parameters
for a class r, the compensation parameters can be
derived using equations 34 to 36. Fig. 6 depicts how
these parameters are estimated for a class of recog-
nition components r. Each class r is associated with
a single clean speech Gaussian, N/ (/Agf), Eg)), com-
puted from the clean speech acoustic model and
state occupancy statistics. The rest of the joint pa-
rameters may be predicted using model-based com-
pensation approaches such as PMC or VTS com-
pensation (Liao and Gales, 2007), given some noise
model. In contrast to the FE-Joint scheme, during
decoding all the front-end components representing
different groups of recognition components are ac-
tive and pass their measure of uncertainty to the
recogniser. This operation is similar to constrained
MLLR (Gales, 1998a), but with the addition of a
variance bias.

(r) —
2=

3.3. Computational cost

The additional costs for different noise compensa-
tion schemes in the front-end processing, and during
decoding are summarised in Table 1. M-Joint com-
pensation with diagonal variances is surprisingly
efficient in comparison to front-end uncertainty de-
coding, eg SPLICE with uncertainty or FE-Joint.
With the same number of transforms, R = N, they
have a similar front-end computational cost. The
main difference is that the variance bias applied
to the recognition model-set is fixed, and therefore
maybe cached, given a particular acoustic environ-
ment. In contrast, the uncertainty bias in front-end
schemes will vary if either the acoustic environ-
ment or the front-end component changes. Thus in
general, model-based uncertainty approaches are
at least as computationally efficient as front-end
uncertainty forms.

Comparing this uncertainty decoding cost to,
for example, the simplest form of model compen-
sation, the log-add approximation (Gales, 1995),
shows that the uncertainty decoding has the po-
tential for large reductions in computational cost.
For the log-add approximation, the dominant cost
is a D-dimensional matrix vector multiplication
for each recognition component, a cost of O(D?).

Table 1
Summarising computational cost for different noise compen-
sation schemes

Front-end Decoding
Compensation Scheme Cost Cost
Feature Enhancement O(DTN) None
Front-end Uncertainty O(DTN) O(DTM)
Model-based Uncertainty = O(DTR) O(DM)
Model-based Forms None O(D?M)

D-number of feature dimensions
T-number of frames

N-number of front-end GMM components
R-number of acoustic model classes
M-number of acoustic model components

If the variances are compensated as well, the cost
increases dramatically (Gales, 1998b). Using a trun-
cated first-order VTS compensation scheme (Acero
et al., 2000) requires the computation of two D x D
matrices per Gaussian in the acoustic model and
then several matrix multiplies to compensate. The
model-based uncertainty form shares parameters for
similar components, so that there is a great saving
in their estimation. Compensation is also cheaper
since the variance bias addition and re-computation
of the normalisation term are both O(D). Therefore
M-Joint compensation may be considered a fast
form of model-based compensation.

4. Issues with front-end uncertainty
decoding

The previous chapter discussed one serious draw-
back with front-end uncertainty based schemes: that
the model variances must be updated every time the
variance bias changes. Although, the computation is
simple compared to a technique such as model-based
VTS compensation, it still involves an expensive re-
computation of the typically cached Gaussian nor-
malisation term. However, there is an even larger
concern for front-end uncertainty decoding forms.

4.1. A fundamental problem

Consider the joint distribution of the clean and
noisy speech shown previously in Fig. 5 where
the Gaussian noise source is constant. Two cor-
rupted speech conditional distributions, p(y|z), are
marked. The first results when the SNR is relatively
high, with the clean speech x = 6. This yields a
highly skewed distribution that peaks sharply at



x = 6 that is highly non-Gaussian; still, in JUD it is
modelled with a normal distribution without serious
degradation (Liao and Gales, 2004). As the SNR
increases the skewing becomes more pronounced
until the distribution becomes a delta function,
yielding the clean speech distribution when substi-
tuted in equation 20. This is expected, since when
the SNR is high the noise should have no influence
on compensating the acoustic models.

The corrupted speech conditional distribution
looks very different when the SNR is low, with
x = 1 while n = 3. At this point, the distribution
is Gaussian, matching the corrupting noise distri-
bution N(3,1). Thus in low SNR, the conditional
distribution approaches the noise distribution

p(yy|@e, M) = N (yy; pry, Tn) (46)

where p, and 3, are the noise mean and variance
respectively. This intuitively makes sense, since the
noise masks the speech. This singularity has also
been documented in Benitez et al. (2004) however
the consequences for uncertainty decoding have not
been previously examined. It will be shown that
front-end uncertainty decoding forms can exhibit
problems because of this, while model-based forms
do not. If equation 46 is substituted into equation 20,
the distribution of the corrupted observation is the
same as the noise distribution

Py M, M, 6,) ~ / Ny tr Sa)plae | M, 6, dey
= N (Ws: g, Sa) (47)

since the conditional distribution is no longer a func-
tion of the clean speech.

Thus regardless of the original recognition model
component, the compensated distribution used dur-
ing decoding will always be identical to the noise dis-
tribution. When a single conditional distribution is
estimated and used for all components, as is the case
with front-end uncertainty decoding schemes, in low
SNR no acoustic discrimination is possible since ev-
ery model distribution has been transformed to the
noise. If the recognition task has additional con-
straints beyond the acoustic models, such as a lan-
guage model, then it may be possible to distinguish
between different models in these regions. However,
when there is no language model or other restric-
tions, for example with a continuous digit recogni-
tion task such as AURORA, these areas where no
discriminatory acoustic information is available will
be prone to errors. These errors will likely be in-

sertions since these are probably background non-
speech regions, although low-energy speech may be
substituted by other models if the noise is significant
enough to mask the speech.

A clear illustration of this issue with FE-Joint
compensation (Liao and Gales, 2004, 2005) is pre-
sented in Fig. 7. This figure shows the clean speech,
corrupted speech, FE-Joint speech estimate, given
by a™y; +b(™ | and the uncertainty standard devia-
tion, af,"), for a simple system with a 16-component
front-end GMM. For those regions of higher energy
speech, for example frames 210 to 220 where the
vowel ‘i’ is articulated, the variance bias is small. On
the other hand, in the lower energy regions around
this vowel, for example frames 225 to 230, the vari-
ance becomes too large to be measured on this scale,
as is the FE-Joint estimate of the value. These large
variances are associated with large values of the
scale factor a(™ as shown in Fig. 7. In this example,
from frames 225 to 230 the value of a(™ is around
100. With greater numbers of front-end components,
these effects are amplified as extremes are no longer
smoothed over fewer components.

The reason that the magnitude of the scaling
factor a(™, and hence the variance biases, both be-
come very large, can be ascertained by examining
the nature of the joint distribution, as given in equa-
tion 29, in low energy speech regions. For regions
with low SNR, the corrupted speech distribution is
dominated by the noise; in other words, the noise
masks the speech. Consider the cross-variance term
E(wz) for a front-end component associated with
these regions of low speech energy

0 === {@—u) @ —n{") =0 (48)

that is, the clean speech and the corrupted speech
are uncorrelated since the clean speech and noise
processes are independent. This lack of correlation
drives A™ from equation 34, to infinity along with
the model variance offsets. In front-end uncertainty
decoding, this is expected behaviour because the
front-end has determined that in these areas, the un-
certainty is high, since the SNR is low. Given equa-
tion 48, the relationship to equation 47 becomes
clearer by re-expressing equation 22, for component
m, as
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Fig. 7. Plot of log energy dimension for snippet from AURORA digit string 8-6-Zero-1-1-6-2, showing 16-component GMM

FE-Joint estimate a(™y; + b(®), uncertainty bias aén), and a(™).

p(yt|M7M30t7m) (49)
N (s =40 (= ) 44, (50)
2§g>2;">-1(2("1>—2;">) B InmT, Egn))

N (g, =)

which is simply the noise distribution in a low en-
ergy region. Therefore, allowing an unconstrained
estimate of A™ may result in large numbers of
errors, mainly insertions, depending on the task.
FE-Jointmay be viewed as operating in an “uncer-
tainty space” since the features are transformed by
A("); this is why in noisy regions the features are
highly scaled rather than the models being trans-
formed to the noise distribution.

Though this is correct in the sense that given
the assumptions, this provides the compensation pa-
rameters to use, the assumptions are only simple
approximations chosen to make FE-Joint compen-
sation efficient. Consequently, it may be prudent to
mitigate the extreme symptoms that result by re-
straining the possible values for the compensation
parameters. The obvious approach is to examine the
correlation coefficients discussed earlier for each of
the dimensions, defined as

(n)

(n) Tzy,i

pzy,i = n)2 (n)2
\V Ua(c,i) Ug(;,i)

The compensation parameter estimates given in

(51)

(52)

10

equations 34 to 36 can then be re-expressed in terms
of the correlation coefficient as

(n) ol
n z,1
i = "y () (53)
zy,i9y,i
w_ ) Ovs
n n z,i n
b =i = iy M (54)
TY,i7 Yyl
o_(n)2
2 Vi 2
o’ =t o (55)
zY,t

for the diagonal form of FE-Joint. To restrict the

extreme values of a!” and 052)2 that can be ob-

tained, a minimum value on the correlation coeffi-

cient can be enforced. Accordingly, the correlation

P;Z),i

A

in equations 53-55 is set to

(n) )

= max(p,, ;P (56)

where p is an empirically determined constant. In-
creasing the value of p raises the minimum accept-
able correlation, decreasing the maximum variance
bias. This can be viewed as enforcing a SNR floor
since SNR is highly related to correlation Borga
(2001). The effects of this flooring on the same snip-
pet of artificially corrupted speech from Fig. 7 is
shown in Fig. 8. As anticipated, the extremes in the
variance bias observed before have been tempered.

Since this fundamental issue of all distributions
becoming the same in low SNR theoretically affects
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Fig. 8. Plot of log energy dimension for snippet from AURORA digit string 8-6-Zero-1-1-6-2, showing 16-component GMM

FE-Joint estimate, a(™y; + b("), and uncertainty bias at(,n)
all front-end uncertainty forms, SPLICE with uncer-
tainty should also suffer from it. However this has
not been observed, for example, on the AURORA
results presented in Droppo et al. (2002). This is
because a limit is applied on the maximum value

of the variance bias scaling factor agz.") to 1/a in
equation 28. Here « is also an empirically deter-
mined parameter. In addition to this explicit floor-
ing, there is also an under-estimate of the value of
agl-"). In order to make the SPLICE with uncertainty
form tractable, a single clean speech Gaussian for
the denominator of equation 25 is used. Since its
variance will be larger than any of the individual
front-end components that should be used, the scal-
ing estimate will be lower than expected as can be
discerned from equation 25. This under-estimation
will become larger as the number of front-end com-
ponents increases because the variance of the indi-
vidual model components will become smaller and
smaller compared to the global variance. This is ex-
actly the situation when a component might be ex-
pected to be associated only with a low-energy noise
region.

4.2. Comparison with other uncertainty-based
schemes

The problem with front-end uncertainty decod-
ing is that the conditional distribution p(y,|z¢, M)
is well suited for acoustic model components that
model the region n* in the acoustic space, but not
others; in low SNR this leads to all components being
transformed to the equivalent of the noise model. In
contrast, M-Joint has multiple different p(y,|z:,r)
dependent on the model class r. Pure model-based
schemes estimate this conditional distribution for
every model component m. Thus model-based com-
pensation schemes, such as M-Joint, do not suf-
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, with correlation flooring p = 0.1.

fer from this problem since all the models are not
globally affected in the same manner. Each model,
or group of components, is compensated individu-
ally and hence the relative affect of the corrupting
noise is taken into account. For example high-energy
speech is less influenced by noise than the original
background models. This is a result of maintain-
ing the tie between the conditional distribution and
the clean speech distribution in equation 20. With
recognition components being compensated differ-
ently relative to the noise, they may be distinguish-
able from others, until the interfering noise sub-
sumes all possible speech. Therefore, this theoreti-
cal issue with all front-end uncertainty based tech-
niques is not present for model-based forms.

With observation uncertainty, this is also not an
issue. While one view may be that the observation
uncertainty should be infinite when noise subsumes
speech, with a different clean speech prior the uncer-
tainty can be bounded. In MBFE with uncertainty,
the clean speech estimate in 18 and variance in equa-
tion 19 applied to the acoustic models, where the
cross correlation again is zero, becomes

&y = (57)
2 =2 - 50 (3(7) "5 (58)
== (59)

which in this case is the simplified clean speech
model for this noise region n, which in low SNR is
the noise variance of the clean speech background
model. Obviously, substituting this clean speech
posterior into equation 16 is not problematic. In
contrast, the variance of the Weiner filtering pro-
cess yields the noise variance X, of the noisy test
condition when the SNR approaches —oo (Benftez
et al., 2004). This inconsistency is due primarily to
the different forms of the clean speech posterior,



but may be more generally symptomatic of lacking
a formal framework.

4.3. Summary

In this section, a major issue for front-end un-
certainty decoding forms has been discussed. There
can be low SNR regions where models are ren-
dered acoustically indistinguishable, which can re-
sult in spurious insertion errors if no other search
constraints are available. This was demonstrated
with two such front-end uncertainty forms: SPLICE
with uncertainty and FE-Joint. A solution for the
FE-Joint form was discussed and an analysis of
why SPLICE with uncertainty does not explicitly
display these problems was presented. In compar-
ison to these forms, the observation uncertainty
approach does not have this inherent issue, but does
not appear to be based on any formal mathematical
foundation. Also pure model-based techniques like
PMC or ALGONQUIN do not suffer from this problem,
as they compensate each component differently.

5. Experiments

This section reports quantitative results on the
standard small-vocabulary AURORA task and the
medium-sized Resource Management corpus—both
artificially corrupted databases.

5.1. The AURORA system

AURORA 2.0 is a small vocabulary digit string
recognition task (Hirsch and Pearce, 2000). Utter-
ances are one to seven digits long based on the TI-
DIGITS database with noise artificially added. The
clean training data is comprised of 8440 utterances
with 55 male and 55 female speakers. For matched
training, 422 sentences are provided for each of 16
conditions: 4 different SNRs ranging from 20 to 5
dB, and with the 4 different additive noise sources
N1 to N4: subway, babble, car and exhibition hall.
Each of the 16 conditions also has a test set of a 1001
sentences with 52 male and 52 female speakers.

The reference recogniser uses a 39 dimensional
feature vector consisting of 12 MFCCs appended
with unnormalised log energy, delta and delta-delta
coefficients. The acoustic models are whole word
digit models, each with 16 emitting states, 3 mix-
tures per state and silence and inter-word pause
models to give 546 components. For this work, an in-
ternal HTK 3.3 alpha system was used, as opposed
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to the reference 2.2 version used to report the stan-
dard results. This resulted in very minor differences
in the baseline performance.

5.2. The Resource Management system

The 1000-word naval ARPA Resource Manage-
ment (RM) database (Price et al., 1988) was cor-
rupted with noise at the waveform level from the
NOISEX-92 database (Varga et al., 1992). The clean
data was recorded in a sound-isolated room using a
head mounted Sennheiser HMD414 noise-canceling
microphone yielding a high signal-to-noise ratio of
49 dB*. The speech was recorded with 16 bit res-
olution at 20 kHz and down-sampled subsequently
to 16kHz. The speaker independent training data
for this task consists of 109 speakers reading 3990
sentences of prompted script; the utterances vary in
length from about 3 to 5 seconds totalling 3.8 hours
of data.

The NATO NOISEX-92 database provides
recording samples of various artificial, pedestrian
and military noise environments recorded at 20 kHz
with 16 bit resolution. The Destroyer Operations
Room noise was sampled at random intervals and
added to the clean speech data at the waveform
level prior to parameterisation. The noise itself
has a dominant low frequency background hum,
an unknown repetitive 6 Hz broadband noise of a
machine, and other intermittent speech and spon-
taneous noises.

The baseline recogniser was built using the
RM recipe distributed with HTK (Young et al.,
2004). The 39 dimensional feature vector consists
of 12 MFCCs appended with the log energy, veloc-
ity and acceleration coefficients. The cross-word,
state-clustered triphone acoustic models with six
components per state, giving 9492 recognition com-
ponents, were used along with a simple word pair
grammar. All results are quoted as an average of
three of the four available test sets, Feb’89, Oct’89
and Feb’91, unless otherwise stated; the Sep’92
test data was not used. This gave a total of 30 test
speakers and 900 utterances. All decoding experi-
ments were run using this system as the standard
RM configuration unless otherwise stated.

4 The wavmd tool from the NIST Speech Quality Assurance
Package v2.3 was used to determine the SNR.



5.3. Estimation of compensation parameters

The compensation parameters for all schemes
were estimated using stereo data for the specific
noise condition. This allows the techniques to be
assessed without having to consider inaccuracies
that result from the noise estimation process, or
approximations in the mismatch function. In prac-
tical situations where stereo data is not available,
the compensation parameters can be estimated us-
ing PMC or VTS style schemes (Liao and Gales,
2007). For the front-end uncertainty schemes only
diagonal transformations were used.

For the front-end uncertainty decoding schemes,
SPLICE with uncertainty and FE-Joint, two sets of
front-end GMMs were trained using iterative mix-
ture splitting; these are clean speech GMMs and
corrupted speech GMMs respectively. The first used
clean speech data to train clean speech GMMs from
which corrupted speech GMMs were derived, for
each condition, using stereo data. For the front-end
uncertainty decoding schemes described here, this
is the preferred way of building models, since pro-
vided a noise model is available or can be estimated,
the compensation parameters can be simply esti-
mated using VTS or PMC style approaches (Liao
and Gales, 2004; Xu et al., 2006). The second set
of models were directly estimated from corrupted
speech data. This should better represent the cor-
rupted speech acoustic space.

For M-Joint, the GMM was not trained explic-
itly, but rather each Gaussian is linked with a class
or cluster of recognition model parameters. Model
component classes were derived in a top-down fash-
ion as they are when using constrained MLLR.
When using these model-based schemes the param-
eters in, for example, equation 41 were obtained
from the clean data.

5.4. Results

Table 2 shows the baseline word error rates along
with SPLICE system performance on the AURORA
task. As usual, the addition of noise seriously de-
grades the performance of the system unless the
clean models are compensated. The matched, ap-
proximate “best”, target performance is also shown;
this matched system was built using stereo data and
single-pass re-training (Gales, 1995) to maintain the
clean speech transition probabilities, but update the
output distributions to reflect the corrupted speech.
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SPLICE was evaluated with both clean and corrupted
speech GMMs. The results presented in the table
are with a 256-component GMM, but the same gen-
eral trends were observed for both more and less
components. Not surprisingly the use of the cor-
rupted speech trained GMM, as presented in Droppo
et al. (2002), outperformed the clean speech trained
GMM. It is curious that the SPLICE with uncertainty
schemes were so sensitive to the choice of GMM.
However this may be an attribute of the limitations
of the front-end schemes discussed in section 4. To
investigate the effects of the flooring on SPLICE with
uncertainty a range of values of a (see equation 28)
were tried. Table 2 shows the performance for 0.1
(as recommended in Droppo et al. (2002)) and the
best observed over the range of SNRs 0.95. By in-
creasing the value of o from 0.1 to 0.95 slight perfor-
mance gains were obtained, especially on the lower
SNR conditions. The best configuration was SPLICE
with uncertainty and a = 0.95.

Table 2

Clean, matched and SPLICE with 256 components systems’
performance on AURORA 2.0 test set A, averaged across
N1-N4, WER(%)

SNR(dB)
System 20 15 10 5
Clean 4.62 12.20 31.13 59.16
Matched 1.85 2.81 5.01 11.41
Clean Speech GMM
SPLICE 1.97 296 6.24 15.74
+Uncertainty, o = 0.1 2.49 4.13 8.88 23.06
+Uncertainty, = 0.95 2.30 3.88 8.30 21.38
Corrupted Speech GMM
SPLICE 1.95 3.07 6.13 16.47
+Uncertainty, a = 0.1 2.15 3.22 5.95 14.50
+Uncertainty, o = 0.95 2.00 3.20 5.58 12.29

Table 3 shows the performance of FE-Joint com-
pensation. Two configurations were run. The first
used no flooring value for p. In contrast to the RM
system in Liao and Gales (2004) where significant
performance gains were obtained with no p flooring,
the performance was significantly worse than the
baseline SPLICE system. While slightly fewer dele-
tions and substitutions occurred overall, a vast num-
ber of insertions appeared in regions where there
were a series of frames with low-correlation coeffi-



cients. For example, on the car noise at 20 dB, using
FE-Joint with 256 components and the clean speech
GMM, the number of insertion errors was 421, a
magnitude-fold increase from 31 when no noise is
present. If p is set to 0.9, this drops to a reasonable
19 insertion errors, compared to a total of 13 for the
matched system. The correlation floor at this level
gives significantly improved performance for both
the clean and corrupted speech trained GMM sys-
tems. The modified FE-Joint scheme is comparable
to SPLICE with uncertainty for both clean and cor-
rupted GMM systems.

Table 3
256-component FE-Joint system performance on AURORA
2.0 test set A, averaged across N1-N4, WER(%)

SNR(dB)

System 20 15 10 5
Clean Speech GMM
FE-Joint 16.99 20.50 25.95 42.78
FE-Joint, p = 0.9 1.93 298 6.09 16.36
Corrupted Speech GMM
FE-Joint 22.67 25.82 28.38 34.37
FE-Joint, p = 0.9 1.81 2.88 5.71 14.62

To present a more detailed view of how individ-
ual frames and elements in each of those frames are
affected by this flooring, results of a 16-component
simplified system are presented in Table 4. When p
is in greater than 0.9 all the low-energy and back-
ground related coefficients are affected, severely re-
straining the magnitudes of the mean and variance
biases. Nevertheless, this appears to be an effective
strategy.

Table 4
Flooring pyy ; on 16-component FE-Joint system on AU-
RORA 20dB SNR, WER(%)

p floor
Method 0.99 095 0.9 0.5 0.1 0.01 -1.0
%Frames affected 100 100 100 58 33 27 0
%Elements affected 99 97 90 46 28 12 0
%WER 2.79 2.52 2.52 3.75 24.5 20.8 20.2

M-Joint compensation was tested on this task
with results reported in Table 5. Five systems were
built. The first three used diagonal transformations,
similar to the front-end schemes. The performance
of the 16-transform M-Joint scheme was slightly
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Table 5
M-Joint system performance on AURORA 2.0 test set A,
averaged across N1-N4, WER(%)

Number of SNR(dB)

20 15 10 5

System Transforms

Diagonal Transformations

1 3.33 5.92 13.35 31.96
M-Joint 16 2.47 3.82 7.25 16.63
256 1.90 2.73 5.19 12.00

Full Transformations

1 2.43 3.82 6.97 17.14
16 1.95 2.80 4.23 9.89

M-Joint

worse than the appropriately floored 256 compo-
nent front-end schemes, but with a considerably re-
duced computational cost. With an equal number
of diagonal transforms, 256, the model-based sys-
tem is far superior to the front-end version. More-
over, using full transformations gave considerable
gains. The 16-transform full variance model-based
approach yielded better performance at low SNR
than the matched system. However as the variance
bias is a full matrix, there is the high cost of per-
forming a full covariance matrix decode, compared
to the diagonal covariance matched system. Never-
theless, this does indicate an opportunity to obtain
excellent performance using this M-Joint approach.

On the RM task, as shown in Table 6, the incor-
poration of this correlation flooring does not affect
performance, until it is severely set to 0.9, where on
this task, at this level, it degrades performance. The
presence of a language model to guide the recog-
nition during low SNR regions makes the flooring
unnecessary. The corrupted speech GMM in this
FE-Joint system was derived from a clean speech
GMM and single-pass re-training rather than di-
rectly from the corrupted speech data.

Table 6

Flooring pgy i; on FE-Joint system on RM 20dB SNR,
WER(%)

# of Pconst Floor
System  Comps. 09 0.5 0.1 0.01 -1.0
Clean — 33.2

16 10.8 9.3 9.8 9.7 9.8
FE-Joint

256 10.3 82 82 84 84
Matched — 7.2




Lastly, results of M-Joint compensation on RM
are presented in Table 7. As in the AURORA re-
sults, greater transform specificity improves results;
however, increasing the number of transforms be-
yond 16 did not affect performance much. Also sim-
ilar to AURORA, the most powerful full M-Joint
systems give results comparable to matched system
performance. This essentially incorporates the cor-
relations between dimensions while using diagonal
acoustic model variances.

Table 7
M-Joint system performance on RM 20dB SNR, WER(%)
# of Transform Kind
System  Transforms  Diagonal Full
Clean — 33.2
16 8.2 7.4
M-Joint
256 8.0 7.4
Matched — 7.2

6. Conclusions

This report has presented a fundamental prob-
lem with front-end uncertainty decoding methods:
by only propagating a single vector of features and
probabilities, during periods where the noise is dom-
inant, the ability to effectively discriminate acousti-
cally can be lost. When all the models become iden-
tical in these situations, this causes insertion errors
in the search. With another source for discrimina-
tion, such as a language model, this can be less of
an issue as it guides the search when the SNR is low
and the uncertainty is high. For the FE-Joint com-
pensation scheme, a correlation floor can be used to
enforce a bound on the uncertainty decoding scaling,
ensuring that all models are not updated to be the
same. In SPLICE with uncertainty, the flooring of the
variance of the clean speech posterior and the use of
a global clean speech prior, both aid in preventing
this issue from occurring. M-Joint does not suffer
from this problem since the corrupted speech con-
ditional is tied to the clean speech acoustic model.
This ensures each recognition component, or group
of components, is compensated differently depend-
ing much the noise affects them. If the uncertainty
parameters can be shared across classes of similar
recognition components, such as with M-Joint, ef-
ficiency is similar to the front-end versions, without
this fundamental problem.
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These factors were explored on the small vocab-
ulary AURORA and 1000-word RM corpora. The
need to floor the correlations was demonstrated for
front-end uncertainty decoding such as SPLICE and
FE-Joint forms on the AURORA task; these two
algorithms perform comparably. M-Joint compen-
sation gave better results than either on this small
task. Similar trends were observed on the medium
vocabulary RM database, however the correlation
flooring was not necessary due to the presence of a
language model to guide the search in low SNR ar-
eas. Overall, M-Joint is a superior uncertainty de-
coding form, since it achieves the best noise robust-
ness and efficiency compared to the other uncer-
tainty forms evaluated.

A major limitation of this paper is that exper-
iments are all conducted on artificially corrupted
data and assume stationarity of the noise. This lim-
itation is addressed in Liao and Gales (2007) where
a process for estimating noise models for M-Joint
compensation is presented along with preliminary
results using found data such as Broadcast News.
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