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Unsupervised Adaptation with Discriminative
Mapping Transforms
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Abstract— The most commonly used approaches to speaker over unadapted systems for both supervised and unsupervise
adaptation are based on linear transforms, as these can be adaptation [1], [2]. However, as most state-of-the-arteys

robustly estimated using limited adaptation data. Althoudh sig-

nificant gains can be obtained using discriminative critera for

training acoustic models, maximum likelihood (ML) estimated

transforms are still used for unsupervised adaptation. Ths is

because discriminatively trained transforms are highly sasitive

to errors in the adaptation supervision hypothesis. This pper

describes a new framework for estimating transforms that ae

discriminative in nature, but are less sensitive to this hypthesis
issue. A speaker-independent discriminative mapping trasfor-

mation (DMT) is estimated during training. This transform i s

obtained after a speaker-specific ML-estimated transform beach

training speaker has been applied. During recognition an ML
speaker-specific transform is found for each test-set speak

and the speaker-independent DMT then applied. This allows
a transform which is discriminative in nature to be indirectly

estimated, while only requiring an ML speaker-specific trarsform

to be found during recognition. The DMT technique is evaluaed

on an English conversational telephone speech task. Exparents

showed that using DMT in unsupervised adaptation led to
significant gains over both standard ML and discriminatively

trained transforms.

Index Terms— unsupervised adaptation, discriminative train-
ing, criterion mapping function, discriminative mapping trans-
form

|I. INTRODUCTION

use discriminative training criteria to reduce the wordoerr
rate (WER) [3], [4], [5], there has been interest in also gsin
discriminative criteria for linear transform based adéipta
[6], [7], [8], [9]. It has been shown that in supervised mode
adaptation, the use of discriminative linear transformkT(&)
can lead to significant performance improvements over ML
transform estimation [6]. However, in unsupervised adaia
the performance gain of DLT is greatly reduced [9], [10].
This is because discriminative criteria are more sensiiive
errors in the hypotheses (or references) than the ML aoiteri
This sensitivity to hypothesis errors may be reduced ugorg,
example, confidence scores [11], [12], [9] or lattice-bagpd
proaches [13], [14]. However, even for these approachéss ga
over ML estimated transforms are still small. Thus despite
gains in supervised adaptation, unsupervised discrimaat
adaptation is hot commonly used.

A number of approaches have been proposed for com-
bining ML-estimated transforms with discriminatively ittad
models. For exampleMaximum Likelihood Linear Regres-
sion (MLLR) based discriminative speaker adaptive training
(DSAT) [15], [8], [16], discriminative cluster adaptiveain-
ing [17], and feature MPE (fMPE) [18] or region-dependent
feature transforms [19] have all been successfully used in

Speaker adaptation is a widely used technique to buigeech recognition. A general attribute of all these sclsame
speaker-dependent models to recognise speech from unkndiwat all speaker-specific parameters of the system areastim
speakers. Given a well trained acoustic model, a small amoim an ML-fashion, whereas speaker-independent aspects of
of data from the target speaker are used to modify thlee system may be trained using discriminative criteriagsTh
acoustic model parameters so that the resultant model is mpaper applies the same general approach to estimating dis-
suitable for recognising speech from the specific speakeriminative linear transforms. Here, ML is used to estinmslte
The most commonly used approaches for speaker adaptaspeaker-specific parameters in the recognition stage,eaker
are linear transformations of the acoustic model parameter speaker-independent discriminative transform is esticha
as they can be robustly estimated given limited adaptatidaring training.

data [1], [2]. To estimate the linear transforms, both awliita

The general procedure adopted in this work is to use a

and the associated transcriptions are required. If theecbrrspeaker-independent mapping transform from one form of

transcriptions of the speaker-specific audio data areahlail
the adaptation operates in supervisedmode. However, in

training criterion to another. This will be referred to as a
criterion mapping functiofCMF). The specific form exam-

many applications, such as broadcast news transcriptionimed in this work is to map a speaker-specific ML-estimated
conversational telephone speech, there is no transariptimear transform to be more similar to a Minimum Phone Error

available for the test data. In this case, initial trandeigs

(MPE) discriminatively trained transform. A linear traosh

must be generated using an unadapted model. Then linedtbe used, referred to asdiscriminative mapping transform
transforms are estimated given the audio and these auton(BtMT). In this paper, only MLLR adaptation of the means [1]

ically generated transcription. The linear transforms then

will be examined. However, in theory this approach can be

used to adapt the acoustic model for a final recognition pasgplied to any form of linear transforms, such as constthine

This is unsupervised adaptatioand the focus of this paper.

MLLR [2]. During training, the speaker-independent DMT

Originally, linear transforms were estimated using the mais estimated given ML-estimated transform of each training
imum likelihood (ML) criterion and yielded significant gain speaker. At recognition time, an ML speaker-specific tramsf
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is found for each test-set speaker and the DMT applied to dbtain the best performance [3], [4], [5]. Inspired by the
The combination of the DMT and the ML transform is themesults, there has been interest in using discriminatiitera
used for adaptation. As only the ML criterion is used durinm linear transform based adaptation [6], [7], [8], [9]. The
test data adaptation, the sensitivity to transcriptioromsrin  standard approach is to directly estimate linear transsdion
unsupervised adaptation will be greatly reduced. At theesamach test-set speaker using a discriminative criteriopakgr-
time, due to the nature of the DMT, the combined translependent transforms estimated using these discrim@ativ
form will be discriminative in nature. Hence, the combinedriteria are referred to as discriminative linear transfer
transform can be regarded as an approximation to a speakBi-Ts). The minimum Bayes-risk form of the DLT estimation
dependent DLT. formula can be expressed as

This paper is organised as follows. In section I, linear
transfc_>rms for_ada}ptatio_n are reyie_we(_:i, and .hpw thgy may lwc(is) — arg min {Z P(H|0(5)’W;M)£(H’Hgi;)} (3)
used in combination with discriminative training discubse W R

The DMT framework is discussed in section Ill. Experiments

on an English conversational telephone speech (CTS) task where P(H|O), W; M) is the posterior probability of hy-
presented in section IV followed by conclusions. pothesisH given the observation from speakeand the model

parameterM and the transform parameteW, L‘(H,Hgi%)
is the loss function of{ given the supervisioﬂ-lgfl%,. In this

] ) work, the minimum phone error (MPE) criterion is used, where
Linear transformations are the most commonly used a TH (5

: . X sup) is defined as the number of incorrect phon€'s[4]
proach to speaker adaptation with limited adaptation dajg.,

X X e ) equation (3), as the posterior probability of each pos-
Linear transform based speaker adaptation was initiallgsn sible hypothesis is used in discriminative training, therect

tigated with ML estimation. For mean MLLR adaptation [y anscription is required along with a compact represantat

the transformed mean for speakeya(), can be expressed aSof competing hypotheses. To estimate the DLT, in this work,

a® = AS)N + bﬁ) _ WS)S (1) lattices are used to rep_resent competing hypotheses m1],_[
Once the DLTs are estimated, the form of model adaptation
where¢ = [u? 1)7 is the extended mean vector aWd\y) = remains the same,
(ALY b is the extended linear transform for speakeThe

parameters of the transformvmi) are estimated using the ML

criterion [1] whereW(” = [A{") b{"] is the DLT of speakes.
(s) _ () 1(5) W } As discriminative criteria aim to reduce the recognitioroer
W' = argmax {p(O [H, Wi M) @) (or more generally the loss) of the training data with respec

where O and H® are the observations and refer-the (assumed) “correct” transcription, it is not surpristhat

ence/hypothesis of the adaptation data for speakespec- discriminative estimation is far more sensitive to the aacy

i ) Pf the transcriptions than ML estimation. Furthermore, in
tively, and M are the HMM model parameters. An |mportanunsu ervised adaptation, the speech recognition systech us
issue is how the transcription/hypothest$(*), is obtained. P P ' P 9 y

(5) . .
If it is known a-priori, this issupervised adaptatioand the to generatéisyp, and the competing hypotheses is often very

hypothesis is assumed to be error-free. When the tranizacnipts'm'Iar to the system to be adapted. Then th% comp?tlng
hypotheses tend to be closer to the assumed “correct” hy-

is not availableunsupervised adaptatiomust be used with thesis than if th tual t ivtion had b 4 Th
recognised hypothesis from a speech recognition system. T, esis than 11 the actual transcription had been used. The
iscrimination ability of the trained transform may then be

basic procedure _|s_._ e /(s) . . reduced as an underestimate of the “true” loss functionesl us
1) Generate initial hypothesﬁi using an acoustic s js an inherent problem of directly using discriminativ
n?odel,.such asa spegker-mdependent (SI) model, P@fteria in unsupervised moéleDue to these sensitivities,
S'bl_y with an initial estimate of the trapsform. . although DLTs have been successfully used in supervised
? Es(zl)mate t.h(_a.transform fqr S(E)eakergwen Fh_e audio adaptation [6], only small gains over ML estimated transfer
O'* and initial hypothesist'?) as supervision. The paue heen observed in unsupervised adaptation [9]. Various
process may be repeated. approaches, such as using confidence score to select high-
An important aspect of unsupervised adaptation is that thgality supervision for transform estimation [9], have bee
hypothesis is, in general, errorful. Depending on the numbgyestigated to improve the performance within the directD
of errors and the transform complexity, this may lead to asstimation framework. However, the gains over ML-trained
unreliable estimate of the transforms. Though affected ansforms are still disappointing [9]. Also, DLTs are much
errorful hypotheses, it has been found that the ML estimat@thre computationally expensive to estimate due to the use of

transforms are not very sensitive to the hypothesis erri§mpeting hypotheses. This is why ML estimated transforms
and can yield good reductions in WER with unsupervised
adaptation even at high error rates [20]. This is one of the'Note that the definition of MPE criterion in [4] is an equivaieversion
main reasons for the wide-spread use of MLLR. based on phone accuracy rather than phone error. So theiggiton in [4]
" . . . isto maximise the MPE criterion.
In state-of-the-art speech recognition systems, disodmi — 2gjmjar problems have also been found in unsupervised idisuative
tive training of acoustic models is commonly employed teaining for acoustic model parameters.

II. LINEAR TRANSFORMSFOR ADAPTATION

A =AYb =W 4)
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W = Faa(W5 A) (5)

Indirect discriminative transform estimation irstiet adaptation

are still commonly used in unsupervised adaptation instéadreduced. Within the CMF framework, the final speaker-specifi
often used in combination with discriminatively trained WM
HMMs are discriminatively updated given the ML estimategSlng equation (2); antan(+) IS the mapping function with
Discriminative cluster adaptive training (DCAT) [17] folks the data, this is aindirect discriminative adaptation scheme.
canonical model. Thus, ML-estimated interpolation wesght
model parameters, not for the speaker-specific transform pa
transforms (RDFT) [23] have also been used in combination O
CMF
dependent matrices are then discriminatively trained adi u Fig. 1.
discriminative transforms may be built on top of a speakegiar known in advance or obtained without directly using
unsupervised adaptation and adopt the same general giratggnoqjs of the adaptation data, a clear background refigese
trained. only speaker-specific parameters to be directly updated are
. . . MLLR [20], multiple iterations can be used to refine the
The previous section has described that, due to the h|g [20], multiple i ! N I

estimation of speaker-specific transforms does not work w LLR transform estimate using the MLLR adapted model

. 2 R oo T 2 M ormal unsupervised MLLR adaptation. The second approach
the sensitivity problem byndirectly estimating discriminative

DLTs. discriminative transform, similar to a DLT, is found using
ML-estimated transforms for unsupervised adaptation are
parameters. In the most widely used form of discriminativ, (s) : )
speaker adaptive training (DSAT) [15], [16], the canonicrﬁlhere W,;" is the speaker-dependent ML transform found
_ 4 eaker-independent parametésp convert the ML space to
speaker transforms. During adaptation, ML transforms 3d|gcriminative space AV is not directly estimated from
estimated for each speaker and applied to the DSAT mo £ : d
a similar procedure but uses multiple-cluster models as tﬁQe procedure for transform estimation is shown in figure 1.
are found during training and recognition. In both DSAT :
and DCAT, the discriminative criterion is only used for the
rameters. Discriminatively trained feature transformshsas
Feature MPE (fMPE) [18], [22] and region-dependent feature ! erative Estimation { Final Output
with ML-estimated speaker-specific transforms. In these ap
proaches, the acoustic space is partitioned into regiegsym-
to transform the features. Though the matrices are acoustic
region-dependent, they are independent of speakers. Thesg fiqre 1, ellipses represent the parameters which are
specific_ML—adapted feature-space to achieve fl_thher Speal§upervision data, whereas squares represent the parameter
adaptation gain [19]. All these schemes are relatively sobu that are directly estimated using the audio and supervisjen
Speaker independent parameters are discriminativelpasil o5 er independent parameters whereas shaded baatkgroun
while all speaker-specific parameters, the transformshire represents speaker-dependent parameters. From figure 1, th
the MLLR parameters, the DLT is formed by applying a
I11. DISCRIMINATIVE MAPPING TRANSFORMS mapping without further parameter estimation. As in iteeat
ot - . T imation of MLLR. There are two ways to do this. The
sensitivity 1o initial hypotheses error, direct discrimiive first way is as used in standard iterative MLLR, i.e. refine the
for unsupervised adaptation. In this section, a new framlewoas shown in “iter 1” in figure 1. This is consistent with
the discriminative mapping transform, is proposed to askire :
¢ ¢ is iterative DLT, i.e. estimate the MLLR transform using the
ranstorms. DLT adapted model, as shown in “iter 2”. In this paper, only

“iter 1" is considered in the experiments as it gives a strict
A. Indirect discriminative adaptation using a criterion pra Comparison to MLLR adaptatidn
ping function (CMF) As shown in figure 1, the parameters of the CMF are
required prior to testset adaptation. One way to obtainethes
Bérametersz,&, is to estimate them from the whole training data

Z_ral qhspnr;ynatyi training str?tegy c;efscrlbed 'E SG.'Ct(;OI.e., set. This has two advantages. First there is a large amount of
iscriminative criteria are only used for speaker-indejsm training data to estimate the mapping function. This allows

parameters during training while the ML criterion is used f.oa large number of parameters to be robustly estimated. As

speaker-dependent parameters during training and relamgni described below, if a linear transform is used as the form

To achle\_/e this purpose, a speaker-mdependent_functmm, Bf the CMF, a large number of regression base classes can
CMF, is introduced to map, for example, ML-trained transIO

; into discriminative t ¢ 541 Th i oe effectively used. Second, as the correct transcriptiwas
orms into_ discriminative transtorms [24]. | N€ assumpliop, gy, for the training data, there are no hypothesis seitgiti
here is that the effect of adaptation and discrimination ¢

be factorised. Speak ific ML t f d ues. When using a CMF in recognition, an additional
€ factorised. Speaker-speciiic ranstorms are use 8vantage is that during recognition only an ML-estimated

adapt_the model to the_ sp_ea_ker,_ while speaker-mdependﬁ:‘ ﬁsform is required to be estimated. This avoids need to
CMF is used to add discrimination power to the adapte

parame.)t.ers. As there is no q‘scnm'natwe ?St'mat'on in thes)yjig experiments using a multi-pass decoding framewake showed
recognition stage, the sensitivity to hypothesis erromusthte that using “iter 2" can obtain further improvement in WER.

The criterion mapping function (CMF) uses the same ge
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generate competing hypotheses, which are required foctdirénal update formulae are given. For more details, refer o [9

estimation of DLTs. The rest of this section describes aifipec

implementation of the the CMF based on linear transforms.

B. Discriminative mapping transforms

One simple form of the CMF is to use a linear transfor-

mations of the ML transform parametewﬁ) to obtain the
discriminative transform. This is referred to adiacriminative
mapping transform(DMT). The general form of a DMT is

(6)

where ve¢) maps the matrix to a vector form, for am
dimensional feature vector, let thex (n + 1) matrix W =
[Wi, - ,Wnyi1], Wherew; is thei'h column vector of W,
then the column vector form oW is

vec(W(gS)) = Hdmvec(W,ﬁ)) + Canm

veqW) = [wi, - I

()

Hy, is ann(n + 1) x n(n + 1) matrix andcgy is an(n + 1)
column vector . In this work, a simpler form of transformatio

T
’Wn+1

The sufficient statistics required for DMT update are

Ym(ts) = A (ts) — v (ts) + i (ts) (12)
W=D mlts) (13)
ts
(s) ()
’Ym +Dm 2(sm) S(sm
G = Y e (14)
m,s 04
3. Am(t)or, i + DA™
ki, = » == & (15)

m,s Ugn)
wheret, is the time index for speakey, v2,(ts) and~2,(t,)

are posterior occupancy of the Gaussian componetieing

at times given the numerator and denominator lattices respec-
tively [5]. The numerator and denominator lattices are gjgec
representations of the correct transcription and comgetin
hypotheses paths in MPE training respectively. The ocatypan
2 (ts) and~2 (¢5) are calculated using the lattice forward-
backward algorithm [21] and™!(¢,) is the normal ML pos-

is used insteadHy, is restricted to be block-diagonal interior occupancy calculated given the correct transenptiv

structure withn + 1 identical blocksA 4,. The transformation
can then be expressed as

W = AW + B ®)

where Ay, and B4, are now the speaker-independent DM'I‘D

parameters, an@,, is the matrix form ofcg,. FOr mean
adaptation, this yields the following transformation

)= (AW + Ban) € = Awitl + Baatt + ba (9)

s

where B4, = [Ban ban), Ban IS @an x n matrix and;l,(ni)
W,ﬁ)g. If the DMT is further restricted so th@g4, = 0, this
leads to

A = Ay + s = Wty

where¢!?) = (397 117, Wy, = [Agn bas] is the DMT. This
is the form used in this paper.

(10)

The advantage of this form of simplification is that the

speaker-independent DMT paramet@,,, can be estimated
in a similar fashion to the standard DLTs in equation (3).€Biv
equation (10), the estimation of the DMW 4, using the MPE

criterion can be expressed as

Wen = argmin ¢ 3 P(H|OW, Wi M) L(H, HG)) ¢ (1)
s,H

is a smoothing constant to balance the ML occupancy and
the other occupancy to improve the generalisation abilfty o
the discriminatively trained parameters and serves a a&imil
function to the weight in the I-smoothing technique [4],%5]
¢ isa smoothing term for each componentnd speakes
to ensure the convergence of the discriminative updateisn t
work, it is set to beD{y) = EY, ym(ts) where E = 0.8,
which is a setup used in [3] £:™ is the ML adapted
extended mean vector as defined in equation (ff]{)l,) is the
it" diagonal element of the covariance matrix of Gaussian
componenin, o, ; iS theit element of the observation vector
o;, for speakers, ,z§5m> is the i** element of the current
adapted meag ("), which is calculated using equation (10).
Note that this is different from the ML adapted mean vector
as the current DMT is also used to calculgite™).

Having obtained the above statistics, i row vector of
Wan, r7, with the size ofl x (n + 1), can be estimated by

(16)

During training, the estimation of the DMTs is an iterative
process. A DMT may be estimated in various ways as shown
in figure 2. As in figure 1, ellipses represent parameters
known in advance and squares denote parameters updated
using the training data, a clear background represent&spea
independent parameters whereas shaded background repre-
sents speaker-specific parameters. There are also two ways

r, = G:lkl

where M,Ej_) is the MLLR adapted model parameters foPf iteratively training DMTs. The first method, “iter 17, is
speakers, and all the other notation is the same as in 4In the experimentsq was set to 0.01 as in [9]. It was also found that

equation (3). Note that the above summation is over allitngin
speakers. Thus rather than accumulating statistics usiag
original HMM (as in equation (3)), the DMT estimation use

there was no significant difference between setting= 0 and o = 0.01.
This is felt to be because the regression tree structureed aad there are

§ufficient data for each node in the tree. However= 0.01 was used for

all experiments as this should be a more robust configurdtorsituations

speaker-specific ML-adapted HMM parameters and sums oy@kre there is less training data.

all training speakers. To optimise equation (11), the siaohd

5Setting E is to balance the update speed and convergence. Experiments

MPE optimisation scheme, based on the weak-sense auxiligitgved that, with 1000 DMT regression base classes, usigg 1 value,

function [25], can be used. The derivation of the DMT updafé

h asEl = 2.0 will lead to very slow DMT parameter update. However,
ing very smallE/, such askl = 0.5, will lead to unstable update after

formulae is similar to the standard DLT [9]. Here, only the&everal iterationsE = 0.8 is an appropriate value in practice.
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the iterative DMT, i.e., given the HMM model and MLLR (6), it would be useful to have multiple DMT linear transfam
transforms for each training speaker, only DMT parametersthe same fashion as having multiple MLLR transforms [27].
are iteratively refined. The second approach, “iter 2", us@he same approach to clustering Gaussians together to form
iterative DLT. Here MLLR and DMT are treated togethemnultiple base-classes, either based on data-driven diugte

so not only the DMT, but also the MLLR transforms arén acoustic space or based on phonetic characteristicshean
iteratively updated using the HMM model and previouslused for DMT. As DMT estimation uses all the available train-

trained MLLR+DMT. ing data, the number of transform classes may be made much
____________________________________________________ larger than is usually used for standard speaker adaptation

or 2 Output For Though mean adaptation is considered in this paper, the
iter 1 : Decoding DMT can also be applied to constrained MLLR (CMLLR)
( adaptation [28], [2]. When using DMTs with CMLLR, it

MLLR DMT | | bvT ] becomes a speaker-independent discriminative feature map

ping. It is interesting to contrast this DMT transformation
@ with fMPE or RDFT. As discussed in section I, fMPE and
lterative Training RDFT both use a speaker-independent discriminativelpéihi
"""""""""""""""""""""""""""" transform given the speaker-dependent CMLLR adapted fea-
tures. This is approach is similar to the DMT. However, fMPE
and RDFT both use posteriors of the adapted features and
. ] ) ) ] directly estimate the discriminative transforms. In castr

In this paper, only iterative DMT is considered as thigyT trains a mapping from a ML feature-transformation to a

requires less training tinfle Given a well trained set of giscriminative feature-transformation and is dependenthe
HMMs M, for example discriminatively trained SI HMMs,Component being transformed.

the iterative estimation procedure for DMT is summarised

Fig. 2. Iterative DMT training procedure

below:
1) Estimate the MLLR transformw,ﬁ) for each training IV. EXPERIMENTS
speakers given M. In this section, the DMT technique is evaluated on a large
2) Setk = 0 and ngi) = [I 0], wherelI is the identity vocabulary English conversational telephone speech task.
matrix.
) (k+1) | o . : (s)
3) Estlma(tl?)Wdm using equation (16) givem, W ; A. System description
and Wy,
4) k =k + 1. Goto step 3 until converged. The acoustic model training dataset consists of 5446 speak-

when using MLLR' the discriminative criterion for theers, about 296 hours of data. The sources are the LDC Call-

adapted model may be lower than for unadapted discrimmatilome English ¢he), Switchboard $wbd) and Switchboard-

HMMs. The DMT may then require multiple iterations toCellular GwCel I') datasets. The test set used to evaluate

converge for the discriminative criterion. From the tragi recognition performance is theval 03 dataset, consisting of

procedure, the DMT is dependent on specific HMMs. Hencd44 speakers, about 6 hours. This test set has data from two

if the HMM model set changes, the DMT also needs to éfferent corpora. Th&wbd corpus has a similar data type to

re-estimated. the training data, while thEi sher corpus is not included in
Once the DMT is trained, it is used in testset adaptatidh€ training sources.

together with the HMM set. The procedure is similar to All systems used a 13-dimensional PLP front-end including
figure 1. As indicated in section IlI-A, in this paper, onhast €O and their first, second and third delta parameters. Side-

dard iterative MLLR (“iter 1”) is considered. To summariselevel cepstral mean and variance normalisation and voaet tr

given a set of HMMs M, and DMT W, the discriminative length normalisation (VTLN) were used. An HLDA transform

adaptation for a test-set speakeris performed as shown was applied to reduce the feature dimensionality to 39eStat
below: clustered triphone HMMs with 6K distinct states and an

average of 16 Gaussian components per state were used. The

MPE [4] criterion was used to train all the acoustic modets. |

the MPE training process, the correct transcription wagl use
initial hypothesis for speaker to construct the nl_Jmerator lattices, a heavily pruned hi?gr_

3) Adapt HMMs parameters using equation (10) using tHgodel_was us_ed with the ML moqlel to generate the den_omlna-
DT Wi, and he newl esimatel. e o T e

; y! w uilt. irst wi -i

4) Use the adapted model to decode the audio. . (Sl) MPE system built from the ML-SI model. The second

. : ; . \fhs a MPE trained mean-MLLR based discriminative speaker

single transformation for all Gaussian components. GN&N t 4o oiive training (MPE-SAT) system [29]. This MPE-SAT sys-

simplifications from the more powerful transform in equatio, . adopted the most commonly used discriminative adaptive

SFor the use of the iterative DLT method, refer to [26], wher®Dis training approach. An ML-SAT system was trained first and
investigated in an adaptive training framework. the HMM model parameters were discriminatively updated

1) Find initial transcriptions fok. In unsupervised mode,
M may be used to decode the audio from speaker
2) lteratively estimate MLLR transforrTVV,ﬁ) given the



6 IEEE TRANS. ON ASL, VOL. ?, NO. ??, ????? 2008

given the ML estimated transforms [15]. When using the MPE- Sys. g:s:;:ﬁg # Class ?MT|Trag‘ 'tirat'%”
SAT system in recognition, standard MLLR adaptation was [(MPE-ST | — I 5896 |
normally used. Given the HMM models of the two systems, MLLR Phone > 0817
corresponding DMTs were estimated respectively. 2 0818 — —

Unless explicitly stated, in the recognition stage, mean- | +pwmt | Acoustic 1?)80 8'2%3 0836 | 0841
based linear transform adaptation was performed in unsuper Shone 76 0820 0823 1 0824
vised mode, and the default initial hypothesis was genérate TABLE |

using the MPE-SI system. During the unsupervised adaptatio
MLLR transforms were first iteratively estimated given the
initial hypotheses. For the MPE-SI system, 4 iterationsewer
used for MLLR update given the MPE-SI model. For the MPE-
SAT system, 4 iterations of MLLR update were performed

using the corresponding ML-SAT [30] models, then 2 more

iterations were used to estimate MLLR given the MPE-SARIYING MLLR transforms can be regarded as an approxima-
model. Once the testset speaker-specific MLLR transforign of performing one more iteration of speaker-dependent
were estimated, DMT may then be used to implement giML acoustic training. As the parameters were estimated to
criminative adaptation. After adaptation, the final redtign maximise the likelihood rather than the MPE criterion, the
was a single pass full Viterbi decoding using the adapted MPPected phone accuracy was reduced. Table | also shows
systems and a tri-gram language model trained on 1044Rf change in expected phone accuracy when using a DMT
words with a 58k dictionary. estimated using 1, 2, or 3 training iterations and with défe

As a contrast, standard direct DLTs were also estimatl/mber of regression base classes. Three sizes of regressio
In unsupervised adaptation, rather than using the comaet t classes were examined using the standard data-driventecous

scription, an initial 1-best hypothesis was used to consthe ClUstering approach [27], 2, 46 and 1000. A 46 base-class set

numerator lattices for direct DLT estimation. This 1-begt h WS also estimated using phone information, i.e., eacts clas

pothesis was generated by the MLLR adapted MPE-SI mod\éﬁ_eo! a c_zllstlnct center-phone in the triphone models. All _DMT

Denominator lattices for testset speakers were generated u raining improved the expected phone accuracy. Incredsiag

a similar way to the MPE training, where the ML-SI model angUmber of regression base classes or the training itegation

a heavily pruned bi-gram language model were used. Me&lRVe hlghe_r values. It can be foundthat with 1000 base dasse

based DLTs were then estimated using the MPE criterion 4§ DMT yielded a large increase in expected phone accuracy.

in [9]. This shows that given enough parameters and flexibility, the
It is worth noting that, for all experiments, two regressioMT iS effective in improving the discrimination power ofeth

base classes, one for speech and one for silence, were (fgpPted model on the training data.

for MLLR and DLT to achieve robust estimate. However, for Having investigated the expected phone accuracy on the

DMT, it is possible to use more transforms, which will pdraining data, it is also interesting to check it on unseen
discussed later. test data. As unsupervised adaptation is the focus of this

work, the 1-best hypothesis generated from the MLLR adapted
model was used as the reference transcription. The correct
B. Effectiveness of DMT to improve discriminative criteria transcription of the test data was also used to give a cdntras
As a specific form of criterion mapping function, DMT used* DMT with 1000 base classes and 3 training iterations was
a linear transform to map the ML parametric space to ti$€d. As an interesting comparison, DLTs were also directly
MPE parametric space. As shown in section 1lI-B, the pmestimated. These expected phone accuracy values of the test
is estimated on the whole training data with the MPE criterioSet are shown in table Il
Itis interesting to see how effective this mapping is in teiwh

EXPECTED PHONE ACCURACY WITH RESPECT TO THE CORRECT
TRANSCRIPTION ON THE TRAINING DATA

Reference for Expected Phone Accurafy

the training data discriminative criterion. Rather thamtijug Adaptation Thest hyp. | correct trans.
the discriminative criterion in the minimum Bayes-risk rfor MLLR 0.793 0.670

as in equation (3), the original MPE criterion [4], which is + DMT 0.803 0.682

to be maximised, is used here. The original MPE criterion is DLT 0.855 0.693

the expected phone accuragyven the competing hypotheses TABLE Il

(denominator lattices generated using heavily pruned-dang EXPECTED PHONE ACCURACY ON THE TEST DATA

model) with respect to the numerator lattices. It is eqeral
to equation (3) but defined in terms of phone accuracy rather

than phone error. The experiments in this section used thq:rom table I, the DMT improved the expected phone

MPE-SI models. Table | shows the expected phone accurac .
of applying the standard MLLR and DMTs on training datzaélcuracy compared to the MLLR adapted model given the

. . o errorful hypothesis as the reference. This shows that tbagh
Note that, during training, the correct transcription waed level discrimination power of the DMT generalises to the
to construct the numerator lattices.

In table I, using MLLR adaptation for the MP_E'SI model 7jere only 1 iteration was used as more iterations degradeddhptation
degraded the expected phone accuracy. This is because pagermance.
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test data when the ML-transform is estimated on error-futicreased adaptation power on unseen test data can cortgpensa
hypotheses The corresponding accuracy for DLT was muckor this and achieve overall improvements. Applying DMT
higher than for MLLR+DMT. This is expected as the DLT isn addition to MLLR is shown to yield further reduction in
able to tune to the reference hypotheses more precisely thWdER as it adds more discrimination ability to the adapted
the DMT. However, due to errors in the reference hypothesmpdel. It can be observed that increasing the number of base-
more than one DLT iteration led to parameter over-trainingjasses improved performance. For the 2 base-class system
and degraded the performance. Therefore, the WERs for otftgre is no gain over the baseline MLLR system. Both the
one iteration of DLT estimation are reported. When using6-class phone and acoustic clustered systems showed sligh
the correct transcription as the reference, all adaptaijon gains after 1 DMT training iteration. The best performanesw
proaches obtained degraded expected phone accuracy.valoletined using the 1000 base-classes. Performance wih thi
This is the effect of sensitivity to the errorful hypothedis system also improved with additional DMT iterations. Using
is interesting to note that the accuracy reductions for MLLBree training iterations and 1000 base-claSses significant
and MLLR+DMT are similar, whereas the DLT yielded muclabsolute reduction in WER, 0.8%, was obtained over the
larger accuracy reductions. This implies that the DLT is enoMLLR adaptatiod®. It is worth noting that all the DMT
sensitive to errors than the other two approaches. performance changes are consistent with the criterionggsan
in table I. This implies that DMT can add discrimination
ability without losing the already achieved adaptation pow

An interesting contrast is to see whether the gain of DMT

The preViOUS section shows the effectiveness of DMT Ebmes from |earning a criterion mapp|ng or from S|mp|y
terms of the expected phone accuracy. This section inws8g increasing the number of transform parameters. To invatstig
various aspects of DMT using the recognition performance gis, an ML-to-ML mapping transform was estimated using the
a full decoding framework. All experiments in this sectiome phone base classes. This increased the test-set MLiamiter
were based on the MPE-SI system. but decreased the MPE criterion compared to MLLR, while

1) Number of base classegis discussed in section Ill, to the opposite is true for the ML-to-MPE DMT. In terms of
improve the power of the DMT, a large number of transformgcognition performance, the ML-to-ML mapping degraded
may be used. Different numbers or types of regression bage MLLR performance by 0.1%, which is statistically in-
classes were investigated as described in section 1V-Be Nefgnificant. This shows that the gain of DMT was not due
that as there is sufficient training data, in all experimentg the increased number of transform parameters.
the actual number of transforms was always the same as th@) Sensitivity to hypothesis error®ne of the motivations
number of the base classes. The results, in terms of word efig the use of DMT is that it should be less sensitive to

C. Using DMT in unsupervised discriminative adaptation

rate (WER), of MPE-SI system are shown in table III. errors in the adaptation hypothesis. To investigate thiscef
. _ _ in detail, three forms of adaptation supervision were used
Sys. gj;sesr:ﬁg # Class D;"T |Tra'2“ 'T’ratéon to estimate the transforms. The baseline hypotheses used so

[(MPEST | — I 552 | far were generated by the unadapted MPE-SI model. As an
MLLR Phone > 570 alternative, this adapted model was used to generateelsittic
2 270 — | — which were used in a lattice MLLR adaptation framework [14].
Acoustic 46 26.9 As alternative hypotheses in the lattice are used, this form

+ DMT — | =
1000 || 26.7 | 26.4 | 26.2 L " ;
Phone 76 681 267 | 267 of estimation should be less sensitive to hypothes_|s errors
TABLE Il Finally, the correct references were used for adaptatipersu

vision. These three forms of hypotheses were used to generat

MLLR transforms, to which DMT could then be applied. For

the standard DLT estimation, the numerator was generated

using the MLLR or lattice MLLR adapted MPE-SI model
From table 1ll, despite the drop in the expected phone acduypothesis respectively. For the reference supervisiea,dhe

racy values on the training data, performing MLLR adaptatiacorrect transcription was used directly as the numeratahfo

on the MPE-SI model obtained signific&MWER reductions. DLT estimatiort2.

This shows that though the discrimination ability measured Table IV gives the WER comparison using these different

by the discriminative criterion may be limited by MLLR, thesupervision hypotheses for adapting the MPE-SI system. As

a general trend, lattice MLLR outperformed 1-best MLLR

8Note that DLTs also had a higher expected phone accuracy udiag the and using the reference as supervision always got significan

correct transcriptions as the reference. However, exgga®ne accuracy is . .. .
not the 1-best phone accuracy and does not necessarilystantsi correlate  P€tter performance. This shows that supervision qualiysdo

with WER. The improved performance of the DLTs is felt to bedse they

are changing the posterior distributions, in particulaarpening posteriors ~ 1°Using very large number of transform base-classes with cgpiate

for those phone correctly classified. Hence, decoding @xgeerts are always smoothing values, such as 5600 base-classes, gave a WERL®6.ZBhough

required to illustrate the improvement in WER even with test expected there is slight improvement, the computational cost wasemsed a lot.

phone accuracy values. Therefore, in this paper, the setup of 1000 transforms wed.us
9\Wherever the termsignificant is used for experiment results, a pair-wise More DMT update iterations were also performed. e iteration gave

significance test was done using the Matched-Pair Sen®egment Word a WER of 26.1%, indicating the convergence of the updaterefbes, in the

Error (MAPSSWE) test at a significance level of 5%, or 95% aice following experiments, 3 iterations were used for DMT ugdat

[31]. 12Note that in this case, there are no OOV words.

%WEROF USINGDMT WITH DIFFERENT BASE CLASSES
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Adaptation | —-pesrpzp T ?:ﬁ?;;"f_"%' Reference outperformed MLLR adaptation. This is consistent with the
VLR >0 557 543 observation from table IV.
+ DMT 26.2 25.9 23.4 As shown in equation (5), in the CMF framework, the final
[ DT [ 268 ] 266 [ 217 ] combined linear transform actually comes from transfogmin
TABLE IV the ML estimated parameters rather than being directly esti
%WEROE USING DIEFERENT SUPERVISION HYPOTHESES mated from data. Thus, in addition to illustrating the sewvisy

of MLLR+DMT to the supervision hypothesis in figure 3, it
is also interesting to show the sensitivity of the approxana
DLT (MLLR+DMT) with respect to the WER improvement of

gplying MLLR transforms. The quality of the MLLR parame-

have an impact on adaptation. For MLLR, using the referen . .
obtained ap2.7% abscﬁute gain over the 1-k?est hypotheselgs may be measured by the gain of MLLR adaptation over the

and 2.4% over the lattice supervision. This is similar t nadapted MPE-SI model. To investigate the relationship, t

performance differences obtained with DMT. In contrast, foadd|t|on_al WER reduction of MLLR“TDMT over the MLLR
(%daptatlon was also calculated. In this case, the spealaes w

absolute over 1-best and 4.9% over lattice based supemvisi%rouDed according to the MLLR adaptation gains. The results

This is far larger than the difference for MLLR with and®® plotted in figure 4.
without DMT. This confirms that the DMT is less sensitive to
the quality of supervision and is thus suitable for unsuisex
adaptation. It is also interesting to note that with errbrft
hypotheses, either 1-best or lattice, DMT always signifigan
outperformed DLT and MLLR. But with reference supervisior
DLT was significantly better than DMT. This is expectec
because DMT is estimated on the training data set and is |
tuned to the test set reference as heavily as DLT.

Table IV shows the overall robustness of MLLR+DMT
with respect to the supervision hypothesis quality. It isoal
worth investigating the detailed pattern of the adaptagains
with respect to different WER regions of the Supervisioﬁig. 4.‘ Additional %WER reduction of DMT v.s. MLLR adaptati®WER
hypothesis. The WERs for each speaker in the test set wisglction

calculated, _Dependlng on the WERS of the unadapted I\/lpE'From figure 4, the additional gains of MLLR+DMT over
S| system, i.e., the 1-best supervision, speakers werggcu

into several WER regions and each group has similar amoM%LR adaptation are relatively stable for different MLLR
9 group provements. Statistical significance tests showed thadst

of data. For each group, the corresponding WER of MLLER"

: ) all additional gains with different MLLR improvements were
and MLLR+DMT adaptation (first column of table IV) were ignificant®. The average additional DMT gain is 0.8%, and

i . . i
then calculated. F|gure 3 shows the adaptatpn_gams oeer ﬁ-{e standard deviation of the DMT gains in figure 4 is 0.3%
unadapted system with respect to the supervision WERS. across all MLLR improvements whose range was from -0.7%

to 5.8%. This shows that the gain from DMT is relatively

——DMT WER Reduction
r — Average DMT WER Reduction|

AN

o I z 3 T s
WER (%) Reduction After MLLR Adaptation (%)

Additional WER (%) Reduction of DMT

§ independent of the gain from MLLR adaptation, which is
gu /N consistent with the assumption that it is possible to fas¢or
5 / / ™~ . the effect of discrimination and adaptation. This indepearod
g \/ - also explains why MLLR+DMT has a similar robustness to
8.l supervision quality as MLLR. This advantage in robustness
2 - is felt to be a nature of the indirect estimation of DLTs in
g —MLLR+DMT equation (5) because n@st data is involved in the DMT
E o5k L L L L L L L L ] estimation.
Supervision (Unadapted MPE-SI) WER (%) To further investigate the generalisation ability of DMAet
breakdown of the unsupervised adaptation (1-best hypigthes
Fig. 3. %WER reduction of adaptation v.s. supervision %WER as supervision) performance is shown in table V.
From figure 3, as the WER of the supervision increases, | Adaptation [[ Swhd | Fisher | Overall |
the adaptation gains generally become larger other than at MLLR 310 | 226 27.0
the very high WER. This is expected as for very good + DMT 801 ] 217 | 262
supervision, the room for improvement is small. In contrast TABLE V
for high WER supervision where there is far larger possible %WERBREAKDOWN BY CORPUS INeval 03

improvement, the estimated parameters are less reliable. |
is worth noting that MLLR+DMT had very similar trend
of supervision sensitivity to MLLR adaptation and always 20nly one point was not significant. This had a gain of 0.24%.
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As indicated in section IV-A, thé=i sher corpus is not Contract No. HR0011-06-C-0022. The paper does not neces-
included in training, whilé&Swbd is included. From table V, the sarily reflect the position or the policy of the US Government
gains of DMT are evenly distributed between the two corporand no official endorsement should be inferred. Thanks to Lan

This again indicates that DMT has a good generalisation Wang for the code for DLT estimation.

data of different types.

3) DMT in MLLR-based discriminative adaptive training:
The previous experiments were based on the MPE-SI modé¢l]
Using DMTs with MLLR-based MPE-SAT models was also
investigated. The comparison between different adaptatio[z]
approaches on MPE-SI and MPE-SAT models are shown in
table VI using a 1000 base-class DMT obtained with 3 trainin%]
iterations.

[ Adaptation ]| MPE-SI [ MPE-SAT | [4]

MLLR 27.0 264
+ DMT 26.2 25.6 [5]
[ DT || 268 | 263 |
TABLE VI [6]

%WERUSINGDMT wiTH MPE-SIAND MPE-SATMODELS
[7]

From table VI, MLLR with and without DMT, and the DLT [g]
on the MPE-SAT system both significantly outperformed the
corresponding MPE-SI systems. The significant gains ofgusin
the DMT with MLLR over the baseline MLLR system and
DLT were retained for the MPE-SAT system. Using MLLR10]
with DMT gave a 0.8% absolute reduction in WER over
the standard MLLR system and 0.7% absolute over the DLT
system. For these experiments the DMT was only used durifgl
test, not during the SAT training. DMTs can also be used
during adaptive training. In [26], this was found to yieldrga [12]
over using MLLR-based discriminative adaptive training.

[13]
V. CONCLUSION

This paper has described a new framework for robugy
discriminative unsupervised adaptation. In this framéuor
a speaker-independent criterion mapping function (CMF) ﬂg]
estimated during training and used to map the maximum
likelihood estimated speaker-dependent transforms to & mé-l
discriminative form. The final transform can be regardedras g
approximation to a discriminative transform directly ested
on the adaptation data. As only ML-adapted speaker-specific
transforms are estimated on the adaptation data, the tramsf 18]
is not very sensitive to errors in the adaptation hypotheses
which is a major issue with standard discriminative estim&®l
tion of linear transforms. A simple initial implementatiar
the CMF based on linear transforms is described. This [&)]
referred to as a discriminative mapping transform (DMT).
The approach is applied to MLLR adaptation in this papgby;
Experiments on a CTS English task illustrated that DMT can
significantly outperform standard DLT and MLLR for both
discriminatively trained Sl and SAT models in unsuperviséczjz]
adaptation.

[23]
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