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Sequence Kernels for Speaker and Speech Recognition

Overview

• Support Vector Machines and kernels

– “static” kernels
– text-independent speaker verification

• Sequence (dynamic) kernels

– discrete-observation kernels
– distributional kernels
– generative kernels and scores

• Kernels and Score-Spaces for Speech Recognition

– dependency modelling in speech recognition
– parametric models
– non-parametric models

• Noise Robust Speech Recognition
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Support Vector Machines

support vector
support vector

width

decision
boundary

margin

• SVMs are a maximum margin, binary, classifier [1]:

– related to minimising generalisation error;
– unique solution (compare to neural networks);
– use kernels: training/classification function of inner-product < xi, xj >.

• Can be applied to speech - use a kernel to map variable data to a fixed length.
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The “Kernel Trick”

• General concept indicated below

– a range of standard static kernels described and used in literature

feature−space

hyperplane

input space

decision boundary

(non−linear kernel)
mapping

margin

• linear:
K(xi, xj) = 〈xi, xj〉

• polynomial, order d:
K(xi, xj) = (〈xi, xj〉+ 1)d

• Gaussian, width σ:

K(xi, xj) = exp
(
−||xi − xj||2

2σ2

)

• Linear/non-linear transformations of fixed-length observations
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Second-Order Polynomial Kernel
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• SVM decision boundary linear in the feature-space

– may be made non-linear using a non-linear mapping φ() e.g.

φ

([
x1

x2

])
=




x2
1√

2x1x2

x2
2


 , K(xi, xj) = 〈φ(xi), φ(xj)〉

• Efficiently implemented using a Kernel: K(xi, xj) = (xi.xj)2
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Speaker Verification with SVMs

Similarity

Speaker ID
(Speaker M)

Feature
Extraction
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Universal Background Model (UBM)

• GMM-based text-independent speaker verification common form used:

p(o; λ) =
M∑

m=1

cmN (o; µ(m),Σ(m))

– compares likelihood from speaker model and general model (UBM)
– how to integrate SVMs into the process [2]
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Sequence Kernels
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Sequence Kernel

• Sequence kernels are a class of kernel that handles sequence data

– also applied in a range of biological applications, text processing, speech
– in this talk a these kernels will be partitioned into three classes

• Discrete-observation kernels

– appropriate for text data
– string kernels simplest form

• Distributional kernels

– distances between distributions trained on sequences

• Generative kernels:

– parametric form: use the parameters of the generative model
– derivative form: use the derivatives with respect to the model parameters
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String Kernel

• For speech and text processing input space has variable dimension:

– use a kernel to map from variable to a fixed length;
– string kernels are an example for text [3].

• Consider the words cat, cart, bar and a character string kernel

c-a c-t c-r a-r r-t b-a b-r

φ(cat) 1 λ 0 0 0 0 0
φ(cart) 1 λ2 λ 1 1 0 0
φ(bar) 0 0 0 1 0 1 λ

K(cat, cart) = 1 + λ3, K(cat, bar) = 0, K(cart, bar) = 1

• Successfully applied to various text classification tasks:

– how to make process efficient (and more general)?
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Rational Kernels

• Rational kernels [4] encompass various standard feature-spaces and kernels:

– bag-of-words and N-gram counts, gappy N-grams (string Kernel),

• A transducer, T , for the string kernel (gappy bigram) (vocab {a, b})

a:a/1

b:b/1

a:a/1

b:b/1

a:  /1ε

b:  /1ε

a:  /1ε

b:  /1ε

a:ε/λ

b:ε/λ

21 3/1

The kernel is: K(Oi, Oj) = w
[
Oi ◦ (T ◦ T−1) ◦Oj

]

• This form can also handle uncertainty in decoding:

– lattices can be used rather than the 1-best output (Oi).

• Can also be applied for continuous data kernels [5].
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Distributional Kernels

• General family of kernel that operates on distances between distributions

– using the available estimate a distribution given the sequence

λ(i) = argmax
λ

{log(p(Oi; λ))}

• Forms of kernel normally based (fi distribution with parameters λ(i))

– Kullback-Leibler divergence:

KL(fi||fj) =
∫

fi(O) log
(

fi(O)
fj(O)

)
dO

– Bhattacharyya affinity measure:

B(fi||fj) =
∫ √

fi(O)fj(O) dO
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GMM Mean-Supervector Kernel

• GMM-mean supervector derived from a range of approximations [6]

– use symmetric KL-divergence: KL(fi||fj) +KL(fj||fi)
– use matched pair KL-divergence approximation
– GMM distributions only differ in terms of the means
– use polarisation identity

• Form of kernel is

K(Oi,Oj; λ) =
M∑

m=1

cmµ(im)TΣ(m)-1µ(jm)

– µ(im) is the mean (ML or MAP) for component m using sequence Oi

• Used in a range of speaker verification applications

– BUT required to explicitly operate in feature-space
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Generative Kernels

• Generative kernels are based on generative models (GMMs/HMMs):

K(Oi,Oj; λ) = φ(Oi; λ)TG-1φ(Oj; λ)

– φ(O; λ) is the score-space for O using parameters λ
– G is the appropriate metric for the score-space

• Parametric generative kernels use scores of the following form [7]

φ(O; λ) = argmax
λ

{log(p(O; λ))}

– possible to concatenate parameters of competing GMMs λ =
{
λ(i), λ(j)

}
– using the appropriate metric, this is the GMM-supervector kernel

• Also possible to use different parameters derived from sequences.

– MLLR transform kernel [8]/Cluster adaptive training kernel [9]
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Derivative Generative Kernels

• An alternative score-space can be defined using

φ (O; λ) = ∇λ log (p(O; λ))

– using just the “UBM” same as the Fisher kernel [10]
– can be trained on unsupervised data

• Possible to extend this using competing models: log-likelihood ratio score-space

φ(O; λ) =




log
(
p(O; λ(i))

)− log
(
p(O; λ(j))

)
∇λ(i) log

(
p(O; λ(i))

)
−∇λ(j) log

(
p(O; λ(j))

)




– “speaker”-specific models used
– include log-likelihood ratio in score-space
– higher-order derivatives also possible
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Derivative versus Parametric Generative Kernels

• Parametric kernels and derivative kernels are closely related [11]

• Consider gradient based optimisation

λn+1 = λn + η ∇ log(p(O; λ))|λn

forms become the same when:

– learning rate η independent of O
– stationary kernel used: K(Oi,Oj) = F(φ(Oi)− φ(Oj))

• Both used for speaker verification [12, 6]

– when forms are not identical, they can be beneficially combined

• BUT derivative kernels more flexible

– higher-order derivatives can be used
– score-space also related to other kernels, e.g. marginalised count kernel [13]
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Form of Metric

• The exact form of the metric is important

– standard form is a maximally non-committal metric

µg = E {φ(O; λ)} ; G = Σg = E {
(φ(O; λ)− µg)(φ(O; λ)− µg)T

}

– empirical approximation based on training data is often used
– equal “weight” given to all dimensions
– Fisher kernel with ML-trained models G Fisher Information Matrix

• Metric can be used for session normalisation in verification/classification

– nuisance attribute projection: project out dimensions [14]
– within class covariance normalisation [15] - average within class covariance
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Speech Recognition
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Dependency Modelling for Speech Recognition

• Sequence kernels for text-independent speaker verification used GMMs

– for ASR interested modelling inter-frame dependencies

• Dependency modelling essential part of modelling sequence data:

p(o1, . . . ,oT ; λ) = p(o1; λ)p(o2|o1; λ) . . . p(oT |o1, . . . , oT−1; λ)

– impractical to directly model in this form

• Two possible forms of conditional independence used:

– observed variables
– latent (unobserved) variables

• Even given dependencies (form of Bayesian Network):

– need to determine how dependencies interact
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Hidden Markov Model - A Dynamic Bayesian Network
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o o o3 4 T2

12a

a a33
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(a) Standard HMM phone topology

ot ot+1

t+1qqt

(b) HMM Dynamic Bayesian Network

• Notation for DBNs [16]:

circles - continuous variables shaded - observed variables
squares - discrete variables non-shaded - unobserved variables

• Observations conditionally independent of other observations given state.

• States conditionally independent of other states given previous states.

• Poor model of the speech process - piecewise constant state-space.
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Dependency Modelling using Observed Variables

ot+2

t+2q

ot−1 to o

tq qt+1qt−1

t+1

• Commonly use member (or mixture) of the exponential family

p(O; α) =
1
Z

h(O) exp
(
αTT(O)

)

– h(O) is the reference distribution; Z is the normalisation term
– α are the natural parameters
– the function T(O) is a sufficient statistic.

• What is the appropriate form of statistics (T(O)) - needs DBN to be known

– for example in diagram one feature, T (O) =
∑T−2

t=1 otot+1ot+2
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Score-Space Sufficient Statistics

• Need a systematic approach to extracting sufficient statistics

– what about using the sequence-kernel score-spaces?

T(O) = φ(O; λ)

– does this help with the dependencies?

• For an HMM the mean derivative elements become

∇µ(jm) log(p(O; λ)) =
T∑

t=1

P (qt = {θj,m}|O; λ)Σ(jm)-1(ot − µ(jm))

– state/component posterior a function of complete sequence O
– introduces longer term dependencies
– different conditional-independence assumptions than generative model
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Score-Space Dependencies

• Consider a simple 2-class, 2-symbol {A, B} problem:

– Class ω1: AAAA, BBBB
– Class ω2: AABB, BBAA

42 31

0.50.5

0.51.0 0.5

P(B)=0.5 P(B)=0.5
P(A)=0.5P(A)=0.5

Feature
Class ω1 Class ω2

AAAA BBBB AABB BBAA

Log-Lik -1.11 -1.11 -1.11 -1.11
∇2A 0.50 -0.50 0.33 -0.33

∇2A∇T
2A -3.83 0.17 -3.28 -0.61

∇2A∇T
3A -0.17 -0.17 -0.06 -0.06

• ML-trained HMMs are the same for both classes

• First derivative classes separable, but not linearly separable

– also true of second derivative within a state

• Second derivative across state linearly separable
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Parametric Models with Score-Spaces

• Use the score-spaces as the sufficient statistics

– discriminative form is the conditional augmented model [17]

P (ωi|O; λ, α) =
1
Z

exp
(
α(i)Tφ(O; λ(i))

)

• Simple to apply to isolated/whole-segment models

• More difficult to extend to continuous tasks

– one option is to consider all possible word alignments as latent variables

P (ω1, . . . , ωN |O; λ, α) =
1
Z

∑
q

P (q|O; λ)
N∏

i=1

exp
(
α(i)Tφ(O(qi); λ(i))

)

Initial results interesting, but needs more work
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SVMs for Noise Robust ASR

• Alternative: use non-parametric classifier such as the SVM

– combine parametric (HMM) and non-parametric technique (SVM)
– combine generative model (HMM) and discriminative function (SVM)

• Parametric form allows speaker/noise compensation (remove outliers)

• Non-parametric form allows longer term dependencies

– nature of dependencies related to kernel (and order of kernel)

• Derivative generative kernels with maximally non-committal metric used here

– LLR ratio most discriminatory - weight by ε (set empirically):

S(O; λ) + ε

(
log

(
p(O; λ(i))
p(Y; λ(j))

))

– S(O; λ) is the score from the SVM for classes ωi and ωj
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Adapting SVMs to Speaker/Noise Conditions

• Decision boundary for SVM is (zi ∈ {−1, 1} label of training example)

w =
n∑

i=1

αsvm
i ziG−1φ(Oi; λ)

– αsvm = {αsvm
1 , . . . , αsvm

n } set of SVM Lagrange multipliers

• Choice in adapting SVM to condition, modify:

– αsvm - non-trivial though schemes have recently been proposed
– λ - simple, model compensation [18]

• Approach adopted in this work is to modify generative model parameters, λ

– noise/speaker-independent SVM Lagrange multipliers
– noise/speaker-dependent generative kernels
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Model-Based Compensation Techniques

• A standard problem with kernel-based approaches is adaptation/robustness

– not a problem with generative kernels
– adapt generative models using model-based adaptation

• Standard approaches for speaker/environment adaptation

– (Constrained) Maximum Likelihood Linear Regression [19]

xt = Aot + b; µ(m) = Aµ(m)
x + b

– Vector Taylor Series Compensation [20] (used in this work)

µ(m) = C log
(
exp(C-1(µ(m)

x + µ
(m)
h )) + exp(C-1µ(m)

n )
)

• Adapting the generative model will alter score-space
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Handling Continuous Digit Strings

ONE

ZERO
SIL

ONE

ZERO
SIL

ONE

ZERO
SIL

FOUR ONE SEVEN

• Using HMM-based hypothesis

– “force-align” - word start/end

• Foreach word start/end times

– find “best” digit + silence

• Can use multi-class SVMs

• Simple approach to combining generative and discriminative models

– related to acoustic code-breaking [21]

• Initial implementation uses a 1-v-1 voting SVM combination scheme

– ties between pairs resolved using appropriate SVM output
– > 2 ties back-off to standard HMM output
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SVMs Rescoring Scheme

Model−Based 
Compensation Kernel

Generative

HMM−Based
Recognition

SVM−Based
Recognition

Noise Corrupted Speech

Recognition Output

Noise Independent
SVMs

• Model compensation needs to “normalise” the score-spaces

– derivative generative-kernels suited for this
– when data “matches” models a score of zero results
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Evaluation Tasks

• AURORA 2 small vocabulary digit string recognition task

– whole-word models, 16 emitting-states with 3 components per state
– clean training data for HMM training - HTK parameterisation
– SVMs trained on subset of multi-style data - Set A N2-N4, 10-20dB SNR
– Set A N1 and Set B and Set C unseen noise conditions
– Noise estimated in a ML-fashion for each utterance

• Toshiba In-Car Task

– training data from WSJ SI284 to train clean acoustic models
– state-clustered states, cross-word triphones (650 states ≈7k components)

word-internal triphones for SVM rescoring models
– test data collected in car (idle, city, highway), unknown length digits

other test sets available, e.g. command and control
– 35, 25, 18 SNR averages for the idle, city, highway condition, respectively
– Noise estimated in a ML-fashion for each utterance
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SVM Rescoring on AURORA 2.0

System Test Set
A B C

VTS 9.8 9.1 9.5
+SVM 7.5 7.4 8.1

WER (%) averaged over 0-20dB

• 1-v-1 majority voting

• SVM rescoring used ε = 2

• Large gains using SVM
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• Noise-independent SVM performs well on unseen noise conditions

• Graph shows variation of performance with ε - ε = 0 better than VTS
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SVM Rescoring on the Toshiba Data

System
VTS WER (%)
iter ENON CITY HWY

VTS
1

1.2 3.1 3.8
+SVM 1.3 2.6 3.2

VTS
2

1.4 2.7 3.2
+SVM 1.3 2.1 2.5

Performance on phone-number task with SVM rescoring

• More complicated acoustic models - 12 components per state

– 1-v-1 majority voting used

• SVM rescoring shows consistent over VTS compensation

– larger gains for lower SNR conditions (CITY and HWY)
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Conclusions

• Sequence kernels are an interesting extension to standard “static” kernels

– currently successfully applied to binary tasks such as speaker verification

• Score-spaces associates with generative kernels interesting

– systematic way of extracting statistics from continuous data
– different conditional independence assumptions to generative model
– score-space/kernels can be adapted using model-based approaches

• Application of score-spaces and kernels to speech recognition

– parametric classifiers: augmented statistical models
– non-parametric classifiers: support vector machines

Interesting classifier options - without throwing away HMMs
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