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Instantaneous and Discriminative Adaptation for Automatic Speech Recognition

Outline

• Adaptive Training

– linear transform-based adaptation
– ML and MAP estimation
– adaptive training

• Instantaneous Adaptation

– Bayesian adaptive training and inference
– variational Bayes approximation

• Discriminative Mapping Transforms

– discriminative transforms
– discriminative adaptive training

• Current adaptive training research

– combining for instantaneous discriminative adaptation
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General Adaptation Process

• Aim: Modify a “canonical” model to represent a target speaker

– transformation should require minimal data from the target speaker
– adapted model should accurately represent target speaker

Adapt

Canonical Speaker Model Target Speaker Model

• Need to determine

– nature (and complexity) of the speaker transform
– how to train the “canonical” model that is adapted
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Form of the Adaptation Transform

• There are a number of standard forms in the literature

– Gender-dependent, MAP, EigenVoices, CAT ...

• Dominant form for LVCSR are ML-based linear transformations

– MLLR adaptation of the means

µ(s) = A(s)µ + b(s)

– MLLR adaptation of the covariance matrices

Σ(s) = H(s)ΣH(s)T

– Constrained MLLR adaptation

µ(s) = A(s)µ + b(s); Σ(s) = A(s)ΣA(s)T
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ML and MAP Linear Transforms

• Transforms often estimated using ML (with hypothesis H)

W
(s)
ml = arg max

W

{

p(O(s)|H;W)
}

– where W
(s)
ml =

[

A
(s)
ml b

(s)
ml

]

– however not robust to limited training data

• Including transform prior, p(W), to get MAP estimate

W(s)
map = arg max

W

{

p(O(s)|H;W)p(W)
}

– for MLLR Gaussian is a Gaussian prior for the auxiliary function
– CMLLR prior more challenging ...

• Both approaches rely on expectation-maximisation (EM)
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Training a “Good” Canonical Model

• Standard “multi-style” canonical model

– treats all the data as a single “homogeneous” block
– model represents acoustic realisation of phones/words (desired)
– and acoustic environment, speaker, speaking style variations (unwanted)

Multi−Style

Model
Adapted 

Canonical Model

(a) Multi-Style System

Adapted
Model

Canonical 
Model

(b) Adaptive System

Two different forms of canonical model:

• Multi-Style: adaptation converts a general system to a specific condition;

• Adaptive: adaptation converts a “neutral” system to a specific condition
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Adaptive Training

Transform
Speaker 1 Speaker 1

Model
Speaker 1

Data

Canonical
Model

Transform
Speaker 2 Speaker 2

Model

Transform
Speaker S Speaker S

Model

Speaker 2
Data

Speaker S
Data

• In adaptive training the training corpus is split into “homogeneous” blocks

– use adaptation transforms to represent unwanted acoustic factors
– canonical model only represents desired variability

• All forms of linear transform can be used for adaptive training

– CMLLR adaptive training highly efficient
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CMLLR Adaptive Training

• The CMLLR likelihood may be expressed as:

N (o;Aµ + b,AΣAT) =
1

|A|
N (A-1o− A-1b;µ,Σ)

same as feature normalisation - simply train model in transformed space

Estimate Speaker
Transform

Canonical Model
Estimate

Transforms

Canonical Model

Model

GI Acoustic Model
Identity Transform

• Interleave Model and transform estimation

• Adaptive canonical model not suited for
unadapted initial decode

– GI model used for initial hypothesis

• MLLR less efficient, but reasonable

– MLLR is used in this work
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Unsupervised Linear Transformation Estimation

• Estimation of all the transforms is based on EM:

– requires the transcription/hypothesis of the adaptation data
– iterative process using “current” transform to estimate new transform

Transform
Estimate

Speaker Transform

Update Complete
Data Set

Identity Transform

Adaptation Data
Recognise

Statistics

Hypothesis

Transform

• Two iterative loops for estimation:

1. estimate hypothesis given transform
2. update complete-dataset given

transform and hypothesis

referred to as Iterative MLLR

• For supervised training hypothesis is known

• Can also vary complexity of transform with
iteration
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Lattice-Based MLLR

• For unsupervised adaptation hypothesis will be error-full

• Rather than using the 1-best transcription and iterative MLLR

– generate a lattice when recognising the adaptation data
– accumulate statistics over the lattice (Lattice-MLLR)

DIDN’T ELABORATEBUTTO
ASIL SILELABORATE

DIDN’T

DIDN’T
BUT

IN

IN

IN

TO

IT

IT

BUT

1-best transcription Word lattice

• The accumulation of statistics is closely related to obtaining denominator
statistics for discriminative training

• No need to re-recognise the data

– iterate over the transform estimation using the same lattice
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Hidden Markov Model - A Dynamic Bayesian Network
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(c) Standard HMM phone topology
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(d) HMM Dynamic Bayesian Network

• Notation for DBNs:

circles - continuous variables shaded - observed variables
squares - discrete variables non-shaded - unobserved variables

• Observations conditionally independent of other observations given state.

• States conditionally independent of other states given previous states.

• Poor model of the speech process - piecewise constant state-space.
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Adaptive Training From Bayesian Perspective

ot ot+1

t+1qqt

(e) Standard HMM

ot ot+1

qt qt+1

t t+1W W

(f) Adaptive HMM

• Observation additionally dependent on transform Wt

– transform same for each homogeneous block (Wt = Wt+1)
– adaptation integrated into acoustic model - instantaneous adaptation

• Need to known the prior transform distribution p(W) (as in MAP scheme)
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Inference with Adaptive HMMs

• Acoustic score - marginal likelihood of the whole sequence, O = o1, . . . ,oT

– still depends on the hypothesis H
– point-estimate canonical parameters (standard complexity control schemes)

p(O|H) =

∫

W

p(O|H,W)p(W) dW

=

∫

W

∑

q∈Q(H)

P (q)
T

∏

t=1

N (ot;Aµ(qt) + b,Σ(qt))p(W) dW

• Latent variables makes exact inference impractical

– need to sum over all possible state-sequences explicitly
– Viterbi decoding not possible to find bets hypothesis

• Need schemes to handle both these problems
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Lower Bound Approximation

• Lower bound to log marginal likelihood using Jensen’s inequality

– introduce variational distribution f(q,W|H), then [1]

log p(O|H) = log

(∫

W

p(O|H,W)p(W) dW

)

≥

∫

W

f(q,W|H) log
p(O,q|W,H)p(W)

f(q,W|H)
dW

• Equality in the above when: f(q,W|H) = P (q,W|O,H)

– unfortunately this is impractical
– need approximation that is as close as possible
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Tightness of Lower Bound

• Tightness of lower bound will affect inference

– want the bound to be as tight as possible
– write log(p(O|H)) ≥ F(O|H) where f(q,W|H) determines F(O|H)

Tightness

log(p(O|H))

F(O|H)

• EM-like algorithm possible

– iterative approach
– more iterations - tighter bounds

• Forms of lower bound

– point estimate - loose
– variational Bayes - tighter bound
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Point Estimate Lower Bound

• Variation distribution can be approximated by a point -estimate

– has the form of a Dirac-delta function δ(W − Ŵ)

f(q,W|H) = P (q|O,W,H)δ(W − Ŵ)

• Basically assume that the transform posterior is a point estimate

P (W|O,H) ≈ δ(W − Ŵ)

– two forms of point estimate possible: MAP, or ML estimates
– issues of robust transform estimation

• Theoretical motivation for ML/MAP linear transforms

– bound is very loose (infinitely large)
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Variational Bayes Lower Bound
• Useful to modify variational approximation to yield tighter bound

– need to have a distribution over the transform distribution

• Assume that the state and transform distributions are conditionally independent

f(q,W|H) = f(q|H)f(W|H)

– decoupling of q and W posteriors makes integral tractable
– more robust than point transform estimate as distribution used

• Variational distribution f(W|H) used to calculate F(O|H)

F(O|H) = log





∑

q∈Q(H)

P (q)
T

∏

t=1

p̃(ot|qt)



 − KL(f(W|H)||p(W))

p̃(ot|qt) = exp

(∫

W

log(p(ot|W, qt)f(W|H)dW

)
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Bayesian Inference Approximations

• So far assumed that hypothesis is given

– in practice inference used to determine hypothesis
– likelihood-based inference

Ĥ = arg max
H

{log(p(O|H)) + log(P (H))}

– lower-bound inference - “practical” approximation

Ĥ = arg max
H

{F(O|H) + log(P (H))}

• As using lower-bound approximation log(p(O|H)) ≥ F(O|H)

– assumes that lower-bound ranking is the same as the likelihood
– strong motivation for making bound as tight as possible
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N-Best Supervision

• Variational approximation is a function of the hypothesis (for VB)

f(q,W|H) = f(q|H)f(W|H)

• 1-Best supervision - standard adaptation, variational approximation based on

f(q,W|H(n)) ≈ f(q,W|H(1)) = f(q|H(1))f(W|H(1))

– same variational approximation used for all hypotheses, H(1), . . . ,H(N)

– biases the output to the supervision (standard problem)

• N-Best supervision - use different variational approximation for each hypothesis

– variational approximation to determine F(O|H(n)) is

f(q,W|H(n)) = f(q|H(n))f(W|H(n))

– tighter-bound than 1-best supervision
– removes bias to 1-best supervision
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N-Best Implementation

• Practical implementation based on N-best list

1. Generate N-best list using baseline models: H(1), . . . ,H(N)

2. Foreach of the N-hypotheses, H(n):
(a) compute variational approximation to yield f(W|H(n))
(b) compute F(O|H(n))

3. Rank hypotheses using F(O|H(n)) + log(P (H(n)))

• Simple example based on N-best list: bat, fat, mat

Exact Evidence Exact
Supervision

1-Best N-Best
p(O|bat)P (bat) 0.88 0.66 0.80
p(O|fat)P (fat) 0.84 0.78 0.78
p(O|mat)P (mat) 0.80 0.68 0.74

– 1-best supervision is fat (same as 1-best supervision output)
– N-best supervision output is bat (correct answer!!!)
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Experiments on Conversational Telephone Speech Task

• Switchboard (English): conversational telephone speech task

– Training dataset: about 290hr, 5446spkr; Test dataset: 6hr, 144spkr
– Front-end: PLP+Energy+1st,2nd,3rd derivatives, HLDA and VTLN used
– 16 Gaussian components per state systems; state clustered triphones
– 150-Best list rescoring in Bayesian inference (utterance-level) experiments

• Acoustic models configurations investigated

– ML and MPE speaker independent (SI) system - baseline models
– MLLR based speaker adaptive training (SAT) - ML and MPE version
– transform prior distribution - single Gaussian distribution
– MPE-SAT only discriminatively update the canonical model

• Performance investigated at an two-level

– utterance level for instantaneous adaptation
– side/speaker level for unsupervised adaptation

Cambridge University
Engineering Department

August 2008 20



Instantaneous and Discriminative Adaptation for Automatic Speech Recognition

Utterance Level Bayesian Adaptation - ML

Bayesian ML Train
Approx SI SAT

— 32.8 —

ML 35.5 35.2
MAP 32.2 31.8
VB 31.8 31.5

• All experiments use N-best supervision

– ML adaptation much worse than SI - insufficient adaptation data
– MAP yields robust estimates - performance gains over ML
– VB yields additional gains over MAP

• SAT performance better than SI performance

– gains from adaptive HMM 1.3% absolute over SI baseline
– integrated adaptation seems to be useful (though implementation an issue)
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Lower Bound Tightness - N-Best Supervision

• Investigate gains of using N-best rather than 1-best supervision

– investigated using ML-SAT models

Bayesian Supervision
Approx. N-Best 1-Best

MAP 31.8 32.0
VB 31.5 32.0

• N-Best supervision significantly better than 1-Best supervision

• VB approximation more sensitive to use of N-best supervision

– expected as VB approximation more powerful than point estimate
– bias due to 1-best supervision has an impact
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Utterance Level Bayesian Adaptation - MPE

Bayesian MPE Train
Approx SI SAT

— 29.2 —

ML 32.4 32.3
MAP 29.0 28.8
VB 28.8 28.6

• Similar trends for lower bound approximation as ML case

– VB > MAP > SI > ML
– gains compared to ML acoustic models reduced (for VB 0.6% vs 1.3%)

• Reason for reduced gain compared to ML systems

– prior distribution estimated on ML transforms
– prior applied in a non-discriminative fashion
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Discriminative Linear Transforms

• Linear transforms can be trained using discriminative criteria

– estimation using minimum phone error (MPE) training

W
(s)
d = arg min

W

{

∑

H

P (H|O(s);W)L(H,H(s))

}

.

• For unsupervised adaptation discriminative linear transforms (DLTs) not used

– estimation highly sensitive to errors in supervision hypothesis
– more costly to estimate transform than ML training

• Not used for discriminative SAT, standard procedure

1. perform standard ML-training (ML-SI)
2. perform ML SAT training updating models and transforms (ML-SAT)
3. estimate MPE-models given the ML-transforms (MPE-SAT)

Cambridge University
Engineering Department

August 2008 24



Instantaneous and Discriminative Adaptation for Automatic Speech Recognition

Discriminative Mapping Functions
• Would like to get aspects of discriminative transform without the problems:

– train all speaker-specific parameters in using ML training
– train speaker-independent parameters in using MPE training

• Applying this to linear transforms yields (as one option) [2]

µ(s) = Ad

(

A
(s)
ml µ + b

(s)
ml

)

+ bd

= Adµ
(s)
ml + bd

– W
(s)
ml =

[

A
(s)
ml b

(s)
ml

]

- speaker-specific ML transform

– Wd = [Ad bd] - speaker-independent MPE transform

• Yields a composite discriminative-like transform

A
(s)
d = AdA

(s)
ml ; b

(s)
d = Adb

(s)
ml + bd
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Training DMTs

• This form of DMT results in the following estimation criterion

Wd = arg min
W

{

∑

s

∑

H

P (H|O(s);W,W
(s)
ml )L(H,H(s))

}

.

– posterior P (H|O(s);W,W
(s)
ml ) based on speaker ML-adapted models

– supervised training of discriminative transform

• Standard DLT update formulae can be used

• Quantity of training data vast compared to available speaker-specific data

– use large number of base-classes
– in these experiments 1000 base-classes used

• Can also be used for discriminative adaptive training [3]
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DMT Speaker Level Adaptation - ML

• Use ML-trained models but side (speaker) level adaptation

Adaptation ML Train
SI SAT

— 32.6 —

MLLR 30.2 29.3
MLLR+DMT 27.9 27.5

• Large gains from MLLR+DMT over standard MLLR

– 2.3% absolute reduction for SI models

• Gains using SAT models slightly less

– 1.8% absolute reduction in error rate
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DMT Speaker Level Adaptation - MPE

• Use SI-MPE models - again side (speaker) level adaptation

Adaptation Supervision
1-Best Lattice Reference

— 29.2 — —

MLLR 27.0 26.7 24.3
MLLR+DMT 26.2 25.9 23.4

DLT 26.8 26.6 21.7

• DMTs show consistent significant gains over standard MLLR adaptation

– lattice-based MLLR shows gains over 1-best

• DLTs show sight gains over MLLR using both 1-best and lattices

– performance biased to reference (or hypothesis)

Cambridge University
Engineering Department

August 2008 28



Instantaneous and Discriminative Adaptation for Automatic Speech Recognition

DMT for Discriminative Adaptive Training

• Three versions of Discriminative SAT (DSAT) evaluated

– transforms: MLLR (standard), DLT and MLLR+DMT
– MPE use to train canonical model

Scheme Training Testing WER

SI
— — 29.2
— MLLR 27.0
— MLLR+DMT 26.2

MLLR MLLR 26.4
DSAT DLT DLT 28.1

MLLR+DMT MLLR+DMT 25.3

• DMTs useful for discriminative adaptive training

– problems with using DLTs for unsupervised adaptation
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Discriminative Instantaneous Adaptation

• Interesting to try discriminative versions of instantaneous adaptation

• Using MAP in combination with, for example, MPE difficult

– “weak”-sense and “strong”-sense auxiliary functions don’t combine well
– implementation of DLT-MAP awkward ...

• DMTs can be directly applied to the Bayesian inference framework

– currently only applied to the MAP Bayesian approximation
– no theoretical issue with the VB approximation

• DMTs from speaker level adaptation used

– known mis-match with the utterance level MAP transforms
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DMT Utterance Level Bayesian Adaptation

Bayesian MPE Train
Approx SI SAT

— 29.2 —

ML 32.4 32.3
MAP 29.0 28.8

MAP+DMT 28.4 28.6

• For the SI models DMTs show gains over MAP approximation

– gains slightly smaller than for speaker-level 0.6% vs 0.8%

• SAT gains disappointing (0.2% compared to 0.8%)

– SAT expected to be more sensitive to transform errors
– DMT estimated on a speaker-level
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Summary

• Described two approaches and their combination

– Bayesian adaptive training/inference for instantaneous adaptation
– discriminative mapping transforms for robust “discriminative” transforms

• Instantaneous adaptation and interesting direction

– current approximations impractical (N-best list rescoring)
– examining alternative approximations (Gibbs sampling EP etc)

• DMTs show gains over standard ML and discriminative transforms

– easy to train and implement
– currently looking to work with CMLLR (mainly implementation)

• Combination dependent on sorting out both!

• Still disappointing gains from adaptive training

– need to look at combinations of transforms (acoustic factorisation [4])
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