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Machine Learning for Speech & Language Processing

Overview

• Machine learning.

• Feature extraction:

– Gaussianisation for speaker normalisation.

• Dynamic Bayesian networks:

– multiple data stream models
– switching linear dynamical systems for ASR.

• SVMs and kernel methods:

– rational kernels for text classification.

• Reinforcement learning and Markov decision processes:

– spoken dialogue system policy optimisation.
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Machine Learning

• One definition is (Mitchell):

“A computer program is said to learn from experience (E) with some class
of tasks (T) and a performance measure (P) if its performance at tasks
in T as measured by P improves with E”

alternatively

“Systems built by analysing data sets rather than by using the intuition
of experts”

• Multiple specific conferences:

– {International,European} Conference on Machine Learning;
– Neural Information Processing Systems;
– International Conference on Pattern Recognition etc etc;

• as well as sessions in other conferences:

– ICASSP - machine learning for signal processing.

Cambridge University
Engineering Department

Foresight Cognitive Systems Workshop 2



Machine Learning for Speech & Language Processing

“Machine Learning” Community

“You should come to NIPS. They have lots of ideas.
The Speech Community has lots of data.”

• Some categories from Neural Information Processing Systems:

– clustering;
– dimensionality reduction and manifolds;
– graphical models;
– kernels, margins, boosting;
– Monte Carlo methods;
– neural networks;
– ...
– speech and signal processing.

• Speech and language processing is just an application
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Too Much of a Good Thing?

“You should come to NIPS. They have lots of ideas.
Unfortunately, the Speech Community has lots of data.”

• Text data: used to train the ASR language model:

– large news corpora available;
– systems built on > 1 billion words of data.

• Acoustic data: used to train the ASR acoustic models:

– > 2000 hours speech data
(∼ 20 million words, ∼ 720 million frames of data);

– rapid transcriptions/closed caption data.

• Solutions required to be scalable:

– heavily influences (limits!) machine learning approaches used;
– additional data masks many problems!
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Feature Extraction

Low-dimensional non-linear projection (example from LLE)
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Gaussianisation for Speaker Normalisation

1. Linear projection and “decorrelation of the data” (heteroscedastic LDA)

2. Gaussianise the data for each speaker:
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(a) construct a Gaussian mixture model for each dimension;
(b) non-linearly transform using cumulative density functions.

• May view as higher-moment version of mean and variance normalisation:

– single component/dimension GMM equals CMN plus CVN

• Performance gains on state-of-the-art tasks
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Bayesian Networks

• Bayesian networks are a method to show conditional independence:

Sprinkler

Wet Grass

Cloudy

Rain

– whether the grass is wet, W , depends on :
whether the sprinkler used, S, and whether it has rained; R.

– whether sprinkler used (or it rained) depends on: whether it is cloudy C.

• W is conditionally independent of C given S and R.

• Dynamic Bayesian networks handle variable length data.
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Hidden Markov Model - A Dynamic Bayesian Network
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(a) Standard HMM phone topology
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(b) HMM Dynamic Bayesian Network

• Notation for DBNs:

circles - continuous variables squares - discrete variables
shaded - observed variables non-shaded - unobserved variables

• Observations conditionally independent of other observations given state.

• States conditionally independent of other states given previous states,

• Poor model of the speech process - piecewise constant state-space.
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Alternative Dynamic Bayesian networks

Switching linear dynamical system:

• discrete and continuous state-spaces

• observations conditionally independent given
continuous and discretes state;

• exponential growth of paths, O(NT
s )

⇒ approximate inference required.
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Multiple data stream DBN:

• e.g. factorial HMM/mixed memory model;

• asynchronous data common:

– speech and video/noise;
– speech and brain activation patterns.

• observation depends on state of both streams
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SLDS Trajectory Modelling

Frames from phrase:
SHOW THE GRIDLEY’S ...

Legend

• True

• HMM

• SLDS
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• Unfortunately doesn’t currently classify better than an HMM!
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Support Vector Machines

support vector
support vector

width

decision
boundary
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• SVMs are a maximum margin, binary, classifier:

– related to minimising generalisation error;
– unique solution (compare to neural networks);
– may be kernelised - training/classification a function of dot-product (xi.xj).

• Successfully applied to many tasks - how to apply to speech and language?
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The “Kernel Trick”
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• SVM decision boundary linear in the feature-space

– may be made non-linear using a non-linear mapping φ() e.g.

φ

([
x1

x2

])
=




x2
1√

2x1x2

x2
2


 , K(xi,xj) = φ(xi).φ(xj)

• Efficiently implemented using a Kernel: K(xi,xj) = (xi.xj)2
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String Kernel

• For speech and text processing input space has variable dimension:

– use a kernel to map from variable to a fixed length;
– Fisher kernels are one example for acoustic modelling;
– String kernels are an example for text.

• Consider the words cat, cart, bar and a character string kernel

c-a c-t c-r a-r r-t b-a b-r

φ(cat) 1 λ 0 0 0 0 0
φ(cart) 1 λ2 λ 1 1 0 0
φ(bar) 0 0 0 1 0 1 λ

K(cat, cart) = 1 + λ3, K(cat, bar) = 0, K(cart, bar) = 1

• Successfully applied to various text classification tasks:

– how to make process efficient (and more general)?
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Weighted Finite-State Transducers

• A weighted finite-state transducer is a weighted directed graph:

– transitions labelled with an input symbol, output symbol, weight.

• An example transducer, T , for calculating binary numbers: a=0, b=1

b:b/1

a:a/2

b:b/2

a:a/1

b:b/1

1 2/1

Input State Seq. Output Weight

bab
1 1 2 bab 1
2 1 1 bab 4

For this sequence output weight: w [bab ◦ T ] = 5

• Standard (highly efficient) algorithms exist for various operations:

– combining transducer, T1 ◦ T2;
– inverse, T−1, swap the input and output symbols in the tranducer.

• May be used for efficient implementation of string kernels.
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Rational Kernels

• A transducer, T , for the string kernel (gappy bigram) (vocab {a, b})

a:a/1

b:b/1

a:a/1

b:b/1

a:  /1ε

b:  /1ε

a:  /1ε

b:  /1ε

a: ε/λ

b: ε/λ

21 3/1

The kernel is: K(Oi, Oj) = w
[
Oi ◦ (T ◦ T−1) ◦Oj

]

• This form can also handle uncertainty in decoding:

– lattices can be used rather than the 1-best output (Oi).

• This form encompasses various standard feature-spaces and kernels:

– bag-of-words and N-gram counts, gappy N-grams (string Kernel),

• Successfully applied to a multi-class call classification task.
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Reinforcement Learning

• Reinforcement learning is a class of training methods:

– problem defined by payoffs;
– aims to learn the policy that maximises the payoff;
– no need for a mathematical model of environment.

PAYOFF
FUNCTION

CONTROL
SYSTEM

ENVIRONMENT

SENSORS ACTUATORS

PAYOFF
FUNCTION

DIALOGUE
POLICY

TTS

USER

ASR/SU

Reinforcement learning Spoken dialogue system

• Dialogue policy learning fits nicely within this framework.
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Example Dialogue

S1: Welcome to NJFun. How may I help you?
U1: I’d like to find um winetasting in Lambertville in the morning.
[ ASR: I’d like to find out wineries in the Lambertville in the

morning ]
S2: Did you say you are interested in Lambertville?
U2: Yes.
S3: Did you want to go in the morning?
U3: Yes.
S4: I found a winery near Lambertville that is open in the morning.

It is Poor Richard’s Winery in Lambertville.

• Variety of action choices available:

– mixed versus system initiative;
– explicit versus implicit confirmation.
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Markov Decision Process

• SDS modelled as a MDP:

– system state and action at time t: St and At;
– transition function: user and ASR/SU model, P (St|St−1, At−1).

z−1

Stπ(   )

Dialogue Policy

A t S t

R t
t−1tP(S | S   ,A   )t−1

Turn Delay User + ASR/SU

• Select policy to maximise expected total reward:

– total reward: Rt sum of instantaneous rewards from t to end of dialogue;
– value function (expected reward) for policy π in state S: V π(S).
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Q-Learning

• In reinforcement learning use the Q-function, Qπ(S,A)

– expected reward from taking action A in state S using policy π

• Best policy using π given state St is obtained from

π̂(St) = argmax
A

(Qπ(St, A))

• Transition function not normally known - one-step Q-learning algorithm:

– learn Qπ(S,A) rather than transition function;
– estimate using difference between actual and estimated values.

• How to specify reward: simplest form assign to final state:

– positive value for task success;
– negative value for task failure.
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Partially Observed MDP

• State-space required to encapsulate all information to make decision:

– state space can become very large e.g. transcript of dialogue to date etc;
– required to compress size - usually application specific choice;
– if state-space is too small MDP not appropriate.

• Also User beliefs cannot be observed:

– decisions required on incomplete information (POMDP);
– use of a belief state - value function becomes

V π(B) =
∑

S

B(S)V π(S)

where B(S) gives belief in a state.

• Major problem: how to obtain sufficient training data?

– build prototype system and then refine;
– build a user model to simulate user interaction.
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Machine Learning for Speech & Language Processing

Briefly described only a few examples

• Markov chain Monte-Carlo techniques:

– Rao-Blackwellised Gibbs sampling for SLDS one example.

• Discriminative training criteria:

– use criteria more closely related to WER, (MMI, MPE, MCE).

• Latent variable models for language modelling:

– Latent semantic analysis (LSA) and Probabilistic LSA.

• Boosting style schemes:

– generate multiple complementary classifiers and combine them.

• Minimum Description Length & evidence framework:

– automatically determine numbers of model parameters and configuration.
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Some Standard Toolkits

• Hidden Markov model toolkit (HTK)

– building state-of-art HMM-based systems
– http://htk.eng.cam.ac.uk/

• Graphical model toolkit (GMTK)

– training and inference for graphical models
– http://ssli.ee.washington.edu/∼bilmes/gmtk/

• Finite state transducer toolkit (FSM)

– building, combining, optimising weighted finite state transducers
– http://www.research.att.com/sw/tools/fsm/

• Support vector machine toolkit (SVMlight)

– training and classifying with SVMs
– http://svmlight.joachims.org/
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