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Abstract

The distances between and relative movements of phones in
acoustic space in language learners have been shown to be in-
dicative of the speaker’s proficiency, in a way that is compact
and independent of bias-inducing voice qualities. Typically
these features are based on known transcriptions, “read aloud”
style tasks. This paper examines the information that can be
extracted about speakers from phone distance features (PDFs)
when the transcription is unknown. Here, phone distances are
obtained by measuring the relative entropy between a distribu-
tion trained on the speaker’s manner of pronunciation of each
of the phones of the English language and distributions trained
on each of the other phones. These features are extracted from
untranscribed audio and so rely on automatic speech recogni-
tion (ASR) output. The ASR can have high word error rates,
as spontaneous, non-native speech is being recognised. Two
forms of speaker characterisation are examined using these fea-
tures: first, the use of PDFs to predict the speaker’s proficiency
and second, their use in classifying the mother tongue (L1) of
the speaker. For both tasks, recorded answers to sections of the
BULATS English Speaking test were used. Using only PDFs
for predicting the grade within a Gaussian Process based grader
showed performance comparable to using a range of standard
fluency style features. This indicates the robustness of PDFs to
errors in ASR output. Additionally, the same PDF features can
detect with high accuracy the L1 of the speakers from among 21
L1s using a deep neural network based classifier. Experiments
on South American Spanish show that it is further possible to
discriminate between the speakers’ countries of origin.

1. Introduction

The process by which a language learner improves their pro-
nunciation can be thought of as a path through acoustic space
from their initial incorrect pronunciation, affected by their na-
tive language (L1) and dialect, towards a pronunciation more
closely resembling native speech. It is therefore useful, in the
context of Computer Aided Pronunciation Training (CAPT), to
be able to automatically characterise the path that the learner is
following and evaluate their position along it.

This paper investigates phone distance features (PDFs) for
characterising the pronunciation of a non-native speaker of En-
glish, from recordings of un-transcribed spontaneous speech.
It examines to what extent these features carry information
about the speaker’s starting point (L1 and country of origin) and
their progress along the learning path (as measured by human-
assigned proficiency scores).

Approaches for automatic assessment of pronunciation in
the literature often include comparison to native speaker mod-
els [1, 2, 3], which can introduce considerable bias with regards
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Figure 1: Architecture of system for automatic assessment and
feedback of spoken language.

to accent and voice quality. The most common features used
are prosodic [4, 5, 6] and ASR confidence measures (both at
the word and phone level) [7, 2, 1]. Recent investigations have
shown promising results based on phone distance based mea-
sures [8, 9], on which this paper is based. Most existing sys-
tems rely on “read aloud” style tasks with known transcriptions.
There are a few systems which can grade spontaneous speech,
e.g. [10, 11, 12], however, their scope is usually limited. This
paper uses phone distance features, an extension on the vowel
distance approaches in [13, 9], to grade spontaneous non-native
speech, using only non-native training data.

The spontaneous nature of the speech and the reliance of
PDFs on an aligned phone sequence necessitates that the candi-
date’s audio must first be passed through an automatic speech
recogniser (ASR) to determine what the speaker said, and the
recognised text used together with initial audio for feature ex-
traction (Figure 1). The error rate of this ASR will always be
an issue and so the robustness of the PDFs to the extent of this
error is also investigated.

Approaches employed so far in the literature for L1 clas-
sification include i-vector modelling [14], GMMs trained on
MFCCs [15], and prosodic [16] approaches, with varying de-
grees of success. The approach investigated in this paper pre-
dicts, from recordings of spontaneous speech, the speaker’s
native language (L1) from among 21 different languages and,
in the case of Spanish speakers, their country of origin from
among three countries.

2. Phone Distance Features

Pronunciation is a key predictor of speaker proficiency, and is
expected to become more native, reducing strain to the listener
caused by L1 effects, as the learner progresses up the CEFR lev-



els [17]. A large component of pronunciation is the manner in
which the phones of the language are rendered. Extracting fea-
tures to represent pronunciation of phones, however, presents
a number of difficulties, particularly when dealing with spon-
taneous speech. First, acoustic models of the phones are not a
robust predictor of proficiency, due to the large variation across
speakers with different accents, voice qualities and L1s but of
otherwise similar level. The forms of native pronunciation be-
ing emulated may also vary from speaker to speaker, owing to
the large variation in English native speech, creating problems
with using native speaker comparisons. The spontaneous nature
of the speech further complicates obtaining comparable native
speaker models and strengthens the need for general non-native
reference approaches.

To overcome these issues, this paper employs an approach
based on the distances between phones. Rather than character-
ising each phone by the distribution of acoustic features in its
articulations, it is defined relative to the pronunciation of each
of the other phones, with the full set of phone-pair distances de-
scribing the speaker’s overall accent. Distances between acous-
tic models should be more robust to speaker variability than the
models themselves. In [9] phonetic pronunciation features con-
sisting of a set of phone-pair distances were proposed for vow-
els and applied to read speech. Here, the features consist of a set
of phone-pair distances covering all 47 phones in English and
are applied to both read and spontaneous speech. This yields
1081 distances in total.

Phone distance features should thus robustly represent the
pronunciation of a speaker in samples of spontaneous, untran-
scribed audio, in a way that is compact and independent of the
speaker’s irrelevant voice qualities.

Figure 2: [llustration of the phone distance concept

The speaker’s recorded utterances are passed through an
ASR and time aligned to the most probable phone sequence
given the recognised word sequence. A set of statistical models
is then trained to represent the manner of pronunciation of each
of the phones in the English language. For each possible phone
pair, the distance between the phone models is measured by the
symmetric Kullback-Leibler (K-L) divergence [18]. If the sta-
tistical models for phones ¢; and ¢; are p (¢;) and p (¢;),
respectively, the K-L divergence between the two phones is de-
fined as
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Since the K-L divergence is not symmetric and the distance
measure should be invariant of the order in which the distribu-
tions are taken, one type of the symmetric K-L divergence (also

known as Jensen—Shannon divergence [19]) is used, which can
be written as

1
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Each phone is modeled by a single multivariate Gaussian
with a mean, p, and diagonal covariance matrix, 3. The input
vector consists of PLP features, extracted from the speaker’s au-
dio. For each speaker, a model set is trained on all the speech
from that speaker. Full recognition is run to acquire 1-best hy-
potheses from which time aligned phone sequences are gener-
ated. Single Gaussian models for each phone are then trained
given these alignments. The K-L divergence of Dys (ps||p;) is
calculated as
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where tr (-) and det (- ) are the operators for the trace and
determinant of the matrix, respectively.

If there is insufficient data to train the multivariate Gaussian
of a particular phone, the PDFs corresponding to all phone-
pairs containing that phone are set to -1. The resultant vector
thus also contains information about which phones the speaker
avoided pronouncing. This information may itself help predict
speaker proficiency and L1. This approach was found to yield
higher score prediction accuracy than replacing missing PDFs
with the mean value based on other speakers in the training set.

This paper investigates the hypothesis that features ex-
tracted in this way are strongly representative of the speaker’s
accent, by evaluating how well they predict the speaker’s profi-
ciency, native language and country of origin.

3. Data

The experiments reported in this paper are based on candidate
responses to the spoken component of the Business Language
Testing Service (BULATS), provided by Cambridge English
Language Assessment. The BULATS speaking test has five sec-
tions, all related to business scenarios [20]. Section A consists
of short responses to prompted questions. Candidates read 8
sentences aloud in Section B. Sections C-E consist of sponta-
neous responses of several sentences in length to a series of
spoken and visual prompts. Candidates are scored on a scale
from O to 30, based on their overall proficiency, mapping to
standard CEFR levels as shown in Table 1.

BULATS score range Level description CEFR level
29-30 Upper advanced Cc2
25-29 Advanced C1
20-25 Upper intermediate B2
15-20 Intermediate B1
10-15 Elementary A2
2-10 Beginner Al
0-2 Fail/Incomprehensible pre-Al

Table 1: Equivalence between BULATS scores and CEFR levels
(adapted from [21])



For the purposes of the experiments in this paper, the data is
segmented into four non-overlapping data sets: BLXO0, which is
used to train the ASR, TRN, which is used to train the regressors
and classifiers, EVL1 which is used to evaluate the classifiers,
and EVL2, which is used to evaluate the regressors,classifiers
and ASR.

It is important that none of the speakers in the training or
evaluation sets (TRN, EVL1 or EVL2) are present in the ASR
training set, so that ASR induced error in the PDFs is uniform
across the data used to train and evaluate the other systems.

For each speaker in each of the four sets there is available
the audio, a human assigned proficiency score and meta-data
describing the candidate’s L1 and country of origin. BLX0 and
EVL2 additionally are accompanied by crowd-sourced tran-
scriptions, which are used in training and evaluating the ASR.
Finally, each speaker in EVL2 has also been scored by a highly
qualified expert grader, who are known to have extremely high
inter-annotator agreement (upwards of 0.95). Evaluation of the
regressor (which is done by Pearson Correlation Coefficient -
PCC - of actual to predicted grades) is therefore only performed
on EVL2.

When evaluating country of origin on speakers whose L1 is
known to be Spanish, subsets of TRN and EVL1 including only
Spanish speakers (called TRN_S and EVL1_S) are used.

Tables 2 and 3 show the breakdown of L1 and country ofo-
rigin in the latter three sets (TRN, EVL1 and EVL2) used in the
course of this investigation.

L1 Set
TRN EVLI EVL2

Spanish 4502 2156 -
Tamil 1468 790 -
Gujarati 1015 230 94
Hindi 563 294 -
Telugu 462 250 -
Malayalam 395 184 -
Bengali 333 152 -
Russian 303 170 -
French 291 115 36
Polish 258 69 39
Vietnamese 245 67 37
Kannada 226 131 -
Arabic 202 51 39
Portuguese 176 78 -
Dutch 173 47 32
Thai 144 43 36
Japanese 135 68 -
Marathi 106 67 -
Italian 107 41 -
Korean 90 53 -
Oriya 65 26 -

Table 2: Breakdown of number of speakers in each data set by
native language (L1)

4. Experimental Setup
4.1. ASR

Due to the incorrect pronunciations, grammar and rhythm, re-
lated to the speaker’s proficiency level and first language (L1),

Country Se—t
TRN.S EVLI1.S
Colombia 798 296
Mexico 3208 1578
Spain 359 220

Table 3: Breakdown of speakers in Spanish data set by country
of origin

the accuracy of standard commercial “off-the-shelf” ASR sys-
tems is too low for non-native learner English. Instead specific
ASR systems are trained.

A stacked-hybrid DNN-HMM acoustic model is used for
ASR. It is trained on a 108 hour (1075 speaker) Gujarati L1 BU-
LATS data set with merged crowd-sourced transcriptions [22]
(BLXO0, mentioned above), using the HTK toolkit [23, 24]. The
input consists of 9 consecutive frames of 40-D filterbank fea-
tures with delta appended to each frame feature. A bottleneck
DNN is trained on the AMI corpus [25], and 39-D BN features
extracted for the BULATS data and transformed using a global
semi-tied covariance matrix [26]. The transformed BN features
are appended to HLDA [26] projected PLP features with CMN
and CVN applied at the speaker level to yield a 78-D per frame
input feature. The input to the stacked hybrid DNN-HMM is
a concatenation of 9 consecutive transformed feature vectors,
702-D. The DNN structure is 702x10005x6000. A Kneser-Ney
trigram LM is trained on 186K words of BULATS test data and
interpolated with a general English LM trained on a large broad-
cast news corpus, using the SRILM toolkit [27].

4.2. Regression and Classification DNNs

Both regression and classification tasks are performed using
deep neural networks (DNNs), constructed using Torch. The
networks each have 6 hidden layers (8 layers in total), with 1200
hidden units per hidden layer. Dropout of 50% of the units is
implemented at each layer. Weight decay and stop validation
are employed to further improve generalisation. The regression
networks are trained for minimum MSE, while the classification
networks are trained for minimum cross-entropy. The networks
are trained in batches of 1000 speakers at a time, for 200 itera-
tions. The regression networks are evaluated (on the evaluation
sets described in Section 3, using the Pearson correlation coef-
ficient (PCC) and mean square error (MSE) between predicted
and actual results. The classifiers are evaluated by the percent-
age of speakers correctly classified.

4.3. Baseline Features

The fluency and prosodic features described in [5], plus the
number and fraction of disfluencies, fraction of speech in the
recording duration and vowel frequency, are used as baseline
features for both the grader and the classifiers. Each system is
implemented using just baseline features, just phone distance
features and the two combined.

5. Results and Discussion

The results of four experiments using the systems described in
the previous sections are presented and discussed in the follow-
ing subsections. First, the ASR trained on BLXO is evaluated
on EVL2 to obtain indicative ASR word error rates, by profi-



ciency and language. Using phone distance features, extracted
as described in Section 2, using the ASR trained on BLXO0, a
score predictor is trained of TRN and evaluated on EVL2, an
L1 classifier is trained on TRN and evaluated on EVL1 and a
country of origin classifier is trained on TRN_S and evaluated
on EVL1.S.

5.1. ASR Performance

This ASR trained on BLXO0 as described in Section 3.1 is evalu-
ated using the transcriptions of EVL2. It has an overall word
error rate (WER) of 47.5% and a phone error rate (PER) of
33.9%. The relatively high PER suggests a considerable amount
of noise will be present in the phone distance features. Note,
however, that the inherent inaccuracies and noisiness of crowd-
sourced transcriptions may lead error rate figures to be exagger-
ated.

The WER for the mixed-L1 data is further broken down by
L1 and CEFR level in Table 4. As can clearly be seen, recogni-
tion error decreases with increasing proficiency of the speaker, a
result that holds across all L1s. This is to be expected as higher
proficiency speakers are likely to speak more intelligibly and
their speech is therefore easier for the ASR to recognise.

Spanish ~ Arabic Dutch French Thai Viet.

Al 69.8 69.7 78.7 55.8 654 654
A2 58.7 67.4 45.7 48.0 56.0 559
B1 48.6 472 413 45.0 50.7 535
B2 47.1 473 40.3 45.0 48.1 56.6
C 48.8 48.6 43.1 36.7 413 43.6

All 50.9 52.0 425 43.6 502 53.0

Table 4: Word error rates (WER) of ASR on indicative Mixed-L1
data set (EVL2) broken down by L1 and CEFR level

5.2. Score Prediction

The baseline and phone distance features are now used to build
an automatic grader, which attempts to predict human-assigned
scores, trained on the ordinary human grader assigned scores in
TRN and evaluated on the expert-assigned scores in EVL2.

As seen in Table 6 below, PDFs outperform baseline fea-
tures in both MSE and PCC when used on their own and
yield considerable improvements when used in combination
with them. This is particularly promising when considering that
these results are in the presence of considerable ASR error and
that the scores being predicted are general proficiency scores
and not pronunciation-specific.

PCC MSE

Base 0.737 264
PDF 0.751 23.6
Base+PDF 0.832 15.8

Table 5: Performance (PCC and MSE) of DNN grader de-
scribed in §4.2, trained on TRN and evaluated on EVL2

5.3. Candidate L1 Classification

Having established that PDFs are strong predictors of profi-
ciency, a DNN classifier is now built to determine whether they
can also be used to predict candidates’ native languages.

Table 6 below shows the performance of the same features
when used to classify the speakers’ native language (L1) from
among 21 candidates. The baseline features already perform
significantly better than random chance, but the PDF-trained
DNN:s significantly outperform them, suggesting the phone dis-
tances are indeed indicative of speaker L1. Combining PDFs
and baseline features degrades the accuracy slightly, suggesting
most information about L1 contained in the baseline features is
also captured by the PDFs.

Accuracy (%)

EVL1 EVL2
Base 53.1 31.9
PDF 69.0 61.2

Base+PDF 66.5 60.0

Table 6: Accuracy (percentage of the speakers correctly classi-
fied) for DNN LI classifier described in §4.2, trained on TRN
and evaluated on EVLI and EVL2

As can be seen in Table 7, L1 classification performance is
highest for those languages with the most data in the training
and testing sets (e.g. Gujarati, Spanish and Tamil) and lowest
for those with the least data (e.g. Marathi, Italian, Korean and
Oriya).

% Correct % # Speakers Most

L1 in TRN confused
Overall 66.5 - -
Spanish 97.7 4502 Portuguese
Tamil 76.7 1468 Telugu
Gujarati 74.5 1015 Hindi
Hindi 62.3 563 Telugu
Marathi 0.0 106 Hindi
Italian 24 107 Spanish
Korean 3.7 90 Spanish
Oriya 0.0 65 Hindi

Table 7: Breakdown by L1 of accuracies for L1 classifier evalu-
ated on EVLI, using baseline + PDE, for L1s with the most and
leasts number of speakers in the training set (TRN), along with
L1 that its spears are most frequently misclassified as.

The identities of the L1s that speakers with each L1 are
most frequently misclassified as confirm expectations regard-
ing similarities between languages. Romance languages (Ital-
ian, Portuguese and French) are most frequently confused with
Spanish, Indo-Aryan languages (Gujarati, Marathi, Bengali and
Oriya) are most commonly misclassified as Hindi, and Dravid-
ian languages (Telugu and Malayalam) most commonly mis-
classified as Tamil. This is confirmed by observing the confu-
sion matrices in Tables 8, 9 and 10 below, which demonstrate
that the majority of incorrect classifications within each group
of languages are as other L1s in the same group.

Breaking down L1 classification accuracy by CEFR level
(Table 11), the classifier is the least accurate (with both base-
line and PDF features) for poor speakers (Al) and its perfor-
mance then increases with proficiency. This is attributed to the
decrease in WER with increasing proficiency. As WER falls,
features are more representative of the speaker’s actual pronun-
ciation and less noisy, resulting in more powerful classification.



Spanish  French  Portugese Italian

Spanish 97.7 0.5 0.0 0.0
French 16.5 43.5 0.0 0.0
Portugese 21.8 24.4 29.1 0.0
Italian 36.6 26.8 0.0 24

Table 8: Percentage of speakers of each Romance LI classified
as other Romance languages

Gujarati Hindi Bengali
Gujarati 74.3 10.9 1.7

Hindi 11.6 62.9 0
Bengali 10.5 55.9 20.3
Marathi 3.0 74.6 0

Oriya 3.8 73.1 0

Table 9: Percentage of speakers of each Indo-Aryan LI classi-
fied as other Indo-Aryan languages

Performance rises faster with proficiency for baseline features
than for PDFs, suggesting the latter are more robust to ASR
error. Performance levels out and slightly dips as proficiency
enters the C levels, which can be attributed to the speakers’ pro-
nunciation becoming more similar to native speech and there-
fore less indicative of their L1.

5.4. Candidate Country of Origin Classification

A similar methodology to the previous section is now employed
to attempt to classify the speaker’s country of origin, to see
whether the predictive powers of PDFs can narrow foreign ac-
cents down further than the level of L1.

As seen in Tables 12 and 13, the classifier performs very
well when identifying the country of origin of speakers with a
known L1. This suggests that PDFs (as well as, to some extent,
the baseline features) are able to capture phonological differ-
ences in the way speakers of the same L1 with different regional
dialects pronounce the phones of English. As with the L1 classi-
fier, PDFs considerably outperform the baseline features, while
adding the baseline features to the PDF only slightly increases
performance.

As with L1 classification, performance increases with
CEEFR level (Table 14), again clearly attributable to decreasing
word error rates.

6. Conclusions

Phone distance features were presented as a means of represent-
ing the relative manner in which a learner renders the phones
of the English language, based only on recordings of sponta-
neous speech. They were shown to be a strong predictor of the
speaker’s proficiency (as assigned by human graders), their na-
tive language and, at least for speakers of Spanish, their country
of origin, performing significantly better than baseline features
at all three prediction tasks. Although they depend on accurate
ASR for best results and their predictive power decreases with
increasing WER, they were found to be more robust to ASR
errors than the baseline features.

Tamil Telugu Malayalam Kannada

Tamil 76.7 8.5 0 0
Telugu 37.6 27.5 0 0
Malayalam  49.5 234 12.4 0
Kannada 244 19.1 0 0

Table 10: Percentage of speakers of each Dravidian LI classi-
fied as other Dravidian languages

%Baseline  %PDF  %Baseline+PDF

Overall 53.1 69.0 66.5
Al 413 60.0 56.5
A2 47.0 60.1 58.5
B1 552 70.0 67.8
B2 53.5 70.5 67.7
Cl 56.3 71.8 67.8
C2 50.0 57.5 71.5

Table 11: Detection rate for speaker LI classifier, evaluated on
EVLI, broken down by CEFR level
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